1.单选题- (共10题)
1.
因燃油涨价,某航空公司把从城市A到城市B的机票价格上涨了10%,三个月后又因燃油价格的回落而重新下调10%,则下调后的票价与上涨前比,下列说法正确的是( )
A.不变 | B.贵了 | C.便宜了 | D.不确定 |
8.
在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是( )
A.3(52﹣x)=38+x | B.52+x=3(38﹣x) |
C.52﹣3x=38+x | D.52﹣x=3(38﹣x) |
2.选择题- (共1题)
11.
阅读一段话,回答问题。
船夫的驾驶技术特别好。行船的速度极快,来往船只很多,他操纵自如,毫不手忙脚乱。不管怎么拥挤,他总能左拐右拐地挤进去。遇到狭窄的地方,他总能平稳地穿过,而且速度非常快,还能作急转弯。两边的建筑飞一般地往后倒退,我们的眼睛忙极了,不知看哪一处好。
3.填空题- (共8题)
19.
文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款_____元.
4.解答题- (共7题)
20.
认真阅读下面的材料,完成有关问题.
材料:在学习绝对值时,我们知道了绝对值的几何意义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.
(1)一般地,点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为 (用含绝对值的式子表示).
(2)利用数轴探究:
①满足|x﹣3|+|x+1|=6的x的所有值是 .
②|x﹣3|+|x+1|的最小值是 ,此时x的取值范围为 .
材料:在学习绝对值时,我们知道了绝对值的几何意义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.
(1)一般地,点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为 (用含绝对值的式子表示).
(2)利用数轴探究:
①满足|x﹣3|+|x+1|=6的x的所有值是 .
②|x﹣3|+|x+1|的最小值是 ,此时x的取值范围为 .
21.
某服装厂加工了一批西服,成本为每套200元,原定每套以280元的价格销售,这样每天可销售200套,若每套在原价的基础上降低10元销售,则每天可多售出100套.据此回答下列问题:
(1)若按原价销售,则每天可获利 元.(销售利润=单件利润×销售数量)
(2)若每套降低10元销售,则每天可卖出 套西服,共获利 元.
(3)若每套西服售价降低10x元,则每套西服的售价为 元,每天可以销售西服 套,共可获利 元.(用含x的代数式表示)
(1)若按原价销售,则每天可获利 元.(销售利润=单件利润×销售数量)
(2)若每套降低10元销售,则每天可卖出 套西服,共获利 元.
(3)若每套西服售价降低10x元,则每套西服的售价为 元,每天可以销售西服 套,共可获利 元.(用含x的代数式表示)
25.
LED照明灯是利用第四代绿色光源LED做成的一种照明灯具,该灯具具有节能、环保、寿命长、体积小等特点,其耗电量仅为相同光通量白炽灯的20%,某商场计划购进甲、乙两种型号的LED照明灯共1200只,这两种照明灯的进价,售价如下表所示.
(1)求出该商场怎样进货,才能使总进价恰好为34000元;
(2)求出该商场怎样进货,才能使该商场售完这批LED照明灯的利润恰好为这批LED照明灯的总进价的45%,并求此时的利润(利润用科学记数法表示)
| 甲型号LED照明灯 | 乙型号LED照明灯 |
进价(元/只) | 20 | 40 |
售价(元/只) | 30 | 55 |
(1)求出该商场怎样进货,才能使总进价恰好为34000元;
(2)求出该商场怎样进货,才能使该商场售完这批LED照明灯的利润恰好为这批LED照明灯的总进价的45%,并求此时的利润(利润用科学记数法表示)
试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(1道)
填空题:(8道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:11
7星难题:0
8星难题:11
9星难题:2