1.单选题- (共8题)
3.
如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为( )
A.255054 | B.255064 | C.250554 | D.255024 |
6.
已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是( )
A.等腰三角形 | B.等腰直角三角形 |
C.直角三角形 | D.等腰三角形或直角三角形 |
7.
现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()
A.1.1111111×1016 | B.1.1111111×1027 |
C.1.111111×1056 | D.1.1111111×1017 |
8.
小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()
A.2种 | B.3种 | C.4种 | D.5种 |
2.选择题- (共2题)
3.填空题- (共3题)
4.解答题- (共5题)
15.
有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:

小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:
a2+ab+ab+b2=a2+2ab+b2=(a+b)2
请你根据方案二、方案三,写出公式的验证过程.
方案二:
方案三:

小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:
a2+ab+ab+b2=a2+2ab+b2=(a+b)2
请你根据方案二、方案三,写出公式的验证过程.
方案二:
方案三:
16.
如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)
(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为________;
(2)若每块小长方形的面积为10 cm2,四个正方形的面积和为58 cm2,试求图中所有裁剪线(虚线部分)长之和.
(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为________;
(2)若每块小长方形的面积为10 cm2,四个正方形的面积和为58 cm2,试求图中所有裁剪线(虚线部分)长之和.

17.
在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2-x-2因式分解的结果为(x-1)(x+1)(x+2),当x=18时,x-1=17,x+1=19,x+2=20,此时可以得到数字密码171920.
(1)根据上述方法,当x=21,y=7时,对于多项式x3-xy2分解因式后可以形成哪些数字密码?(写出三个)
(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为x,y,求出一个由多项式x3y+xy3分解因式后得到的密码;(只需一个即可)
(3)若多项式x3+(m-3n)x2-nx-21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m,n的值.
(1)根据上述方法,当x=21,y=7时,对于多项式x3-xy2分解因式后可以形成哪些数字密码?(写出三个)
(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为x,y,求出一个由多项式x3y+xy3分解因式后得到的密码;(只需一个即可)
(3)若多项式x3+(m-3n)x2-nx-21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m,n的值.
试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(2道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:9
7星难题:0
8星难题:3
9星难题:4