1.选择题- (共4题)
2.单选题- (共7题)
6.
如图,某计算装置有一数据输入口A和一运算结果的输出口B,如表是小明输入的一些数据和这些数据经该装置计算后输出的相应结果:按照这个计算装置的计算规律,若输入的数是10,则输出的数是( )

A | 1 | 2 | 3 | 4 | 5 |
B | 2 | 5 | 10 | 17 | 26 |

A.21 | B.29 | C.99 | D.101 |
8.
下列说法:
①两点之间的所有连线中,线段最短;
②在数轴上与表示﹣1的点距离是3的点表示的数是2;
③连接两点的线段叫做两点间的距离;
④射线AB和射线BA是同一条射线;
⑤若AC=BC,则点C是线段AB的中点;
⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有( )
①两点之间的所有连线中,线段最短;
②在数轴上与表示﹣1的点距离是3的点表示的数是2;
③连接两点的线段叫做两点间的距离;
④射线AB和射线BA是同一条射线;
⑤若AC=BC,则点C是线段AB的中点;
⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有( )
A.2个 | B.3个 | C.4个 | D.5个 |
11.
某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法正确的有( )个.
①这种调查采用了抽样调查的方式
②7万名考生是总体
③1000名考生是总体的一个样本
④每名考生的数学成绩是个体.
①这种调查采用了抽样调查的方式
②7万名考生是总体
③1000名考生是总体的一个样本
④每名考生的数学成绩是个体.
A.2 | B.3 | C.4 | D.0 |
3.填空题- (共5题)
4.解答题- (共9题)
18.
阅读材料:求31+32+33+34+35+36的值
解:设S=31+32+33+34+35+36①
则3S=32+33+34+35+36+37②
用②﹣①得,3S﹣S=(32+33+34+35+36+37)﹣(31+32+33+34+35+36)=37﹣3
∴2S=37﹣3,即S=
,∴31+32+33+34+35+36=
以上方法我们成为“错位相减法”,请利用上述材料,解决下列问题:
(一)棋盘摆米
这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二
粒,第三格放四粒,第四格放八粒…按这个方法放
满整个棋盘就行”国王以为要不了多少粮食,就随口答应了,结果国王输了
(1)国际象棋共有64个格子,则在第64格中应放 粒米(用幂表示)
(2)设国王输给阿基米德的米粒数为S,求S
(二)拓广应用:
1.计算:
(仿照材料写出求解过程)
2.计算:
= (直接写出结果)
解:设S=31+32+33+34+35+36①
则3S=32+33+34+35+36+37②
用②﹣①得,3S﹣S=(32+33+34+35+36+37)﹣(31+32+33+34+35+36)=37﹣3
∴2S=37﹣3,即S=


以上方法我们成为“错位相减法”,请利用上述材料,解决下列问题:
(一)棋盘摆米
这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二


(1)国际象棋共有64个格子,则在第64格中应放 粒米(用幂表示)
(2)设国王输给阿基米德的米粒数为S,求S
(二)拓广应用:
1.计算:

2.计算:

20.
甲、乙两站相距300千米,一列慢车从甲站开往乙站,每小时行40千米,一列快车从乙站开往甲站,每小时行80千米,已知慢车先行1.5小时,快车再开出,则快车开出多少小时后与慢车相遇?
21.
甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出了300元以后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠,设顾客预计累计购物x元(x>300)
(1)分别列出到甲、乙超市购买商品所需费用(用含x的代数式表示);
(2)当x=400元时,到哪家超市购物优惠.
(3)当x为何值时,两家超市购物所花实际钱数相同.
(1)分别列出到甲、乙超市购买商品所需费用(用含x的代数式表示);
(2)当x=400元时,到哪家超市购物优惠.
(3)当x为何值时,两家超市购物所花实际钱数相同.
24.

(1)OA= cm,OB= cm.
(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.
(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.
①当t为何值时,2OP﹣OQ=8.
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为 cm.

(1)OA= cm,OB= cm.
(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.
(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.
①当t为何值时,2OP﹣OQ=8.
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为 cm.
试卷分析
-
【1】题量占比
选择题:(4道)
单选题:(7道)
填空题:(5道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:13
7星难题:0
8星难题:3
9星难题:5