1.单选题- (共12题)
1.
我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比举子长一托,折回索子却量竿,却比竿子短一托“其大意为:现有粮竿和一条绳索,用绳索去量竿,绳索比竿长5尺:如果将绳索对半折后再去量竿,就比竿短5尺,设绳家长x尺,竿长y尺,则符合题意的方程组是( )
A.![]() | B.![]() |
C.![]() | D.![]() |
5.
为确保信息安全,信息需加密传输,发送方由明文一密文(加密) ,接收方由密文一明文(解密),已知加密规则为:明文
对应密文
.当接收方收到密文14.9, 23. 28时,则解密得到的明文是( )


A.7,6,1,4 | B.6,4,1, 7 |
C.4,6,1,7 | D.1,6,,4, 7 |
2.填空题- (共4题)
3.解答题- (共8题)
17.
某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.
若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?
若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?
若该工厂新购得65张规格为
的C型正方形板材,将其全部切割成A型或B型板材
不计损耗
,用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共______只









19.
某市中学生举行足球联赛,共赛了17轮(即每队均需参赛17场),记分办法是胜-场得3分。平场得1分,负一场得0分.
(1)在这次足球赛中,若小虎足球队踢平场数与踢负场数相同,共积16分,求该队胜了几场;
(2)在这次足球赛中,若小虎足球队总积分仍为16分,且踢平场数是踢负场数的整数倍,试推算小虎足球队踢负场数的情况有几种,
(1)在这次足球赛中,若小虎足球队踢平场数与踢负场数相同,共积16分,求该队胜了几场;
(2)在这次足球赛中,若小虎足球队总积分仍为16分,且踢平场数是踢负场数的整数倍,试推算小虎足球队踢负场数的情况有几种,
20.
解不等式组
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式(1),得 .
(Ⅱ)解不等式(2),得 .
(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:

(Ⅳ)原不等式组的解集为 .

请结合题意填空,完成本题的解答.
(Ⅰ)解不等式(1),得 .
(Ⅱ)解不等式(2),得 .
(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:

(Ⅳ)原不等式组的解集为 .
试卷分析
-
【1】题量占比
单选题:(12道)
填空题:(4道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:4
5星难题:0
6星难题:10
7星难题:0
8星难题:5
9星难题:5