湖南省邵阳县白仓镇中学2018届九年级中考数学二模试题

适用年级:初三
试卷号:568015

试卷类型:中考模拟
试卷考试时间:2018/7/16

1.单选题(共4题)

1.
下列运算正确的是(   )
A.B.C.D.
2.
计算,结果是(   )
A.a5b5B.a4b5C.ab5D.a5b6
3.
如图所示,表示互为相反数的点是()
A.点A和点DB.点B和点C;C.点A和点CD.点B和点D
4.
为调查某班学生每天使用零花钱的情况,张华随机调查了20名同学,结果如下表:
每天使用零花钱(单位:元)
1
2
3
4
 5
人数
1
3
6
5
 5
 
则这20名同学每天使用的零花钱的众数和中位数分别是(  )
A.3,3B.3,3.5C.3.5,3.5D.3.5,3

2.选择题(共3题)

5.

读如图的经纬网图,判断甲地的半球位置(  )

6.

读如图的经纬网图,判断甲地的半球位置(  )

7.完形填空

    In August 1999,Yuriko noticed that her daughter,Ayako,was looking thin and pale,1 she insisted that the 22-year-old see a doctor.As they waited for the rest results,the doctor2 gave Yuriko a note while her daughter wasn't noticing.

    In the restroom,Yuriko opened the note,“It is stomach cancer,“said the doctor.“Please3There is no time.”

On September 21,Ayako had a(n)4Three quarters of her stomach were removed.The doctor 5 the situation to Yuriko but the medical terms sounded like a foreign language.

    Ayako was put on anti-cancer drugs,and over the next three months,she 6 from side effects,and lost seven kilograms.

    Yuriko decided to do more to 7 her daughter.She read all kinds of books on cancer.As a single mother,she had no one to share her 8with.

9 the difficulties,Yuriko was able to help her daughter.When Ayako started experiencing breathing difficulties,Yuriko 10 if it could be a side effect of the anti-cancer drug.She told Ayako's doctor and he 11to take her off the drug.

    12in November 2002,Ayako's treatment came to an end.Although she felt her pain 13Yuriko couldn't forget how lost and 14 she felt during her daughter's treatment.She wrote a letter to the local newspaper 15the creation of a support group for cancer patients.

    Phone calls and letters 16 her idea started pouring in.In December 2002,Yuriko formally17 Ikkikai,roughly meaning “sharing the joy”,with the18of providing hope and information for people with cancer,and their families.

    Ikkikai's message has begun to 19Yuriko says,“The simple act of talking to other people who understand your problems can make the greatest 20I hope that more people would join in the group.”

3.填空题(共4题)

8.
分解因式:8x2﹣2=___________.
9.
抛物线的顶点坐标是________.
10.
如图,已知直线,∠1=120°,则∠的度数是    °.
11.
如图,矩形ABCD中,AB=3cm,AD=6cm,点E为AB边上的任意一点,四边形EFGB也是矩形,且EF=2BE,则S△AFC=__________cm2.

4.解答题(共7题)

12.
解方程组:
13.
随着科技与经济的发展,中国廉价劳动力的优势开始逐渐消失,而作为新兴领域的机器人产业则迅速崛起,机器人自动化线的市场也越来越大,并且逐渐成为自动化生产线的主要方式,某化工厂要在规定时间内搬运1200千元化工原料.现有A,B两种机器人可供选择,已知A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用的时间与B型机器人搬运600千克所用的时间相等.

(1)两种机器人每小时分别搬运多少化工原料?
(2)该工厂原计划同时使用这两种机器人搬运,工作一段时间后,A型机器人又有了新的搬运任务,但必须保证这批化工原料在11小时内全部搬运完毕.求:A型机器人至少工作几个小时,才能保证这批化工原料在规定的时间内完成.
14.
如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处. 

(1)求点E的坐标;   
(2)求折痕CD所在直线的函数表达式;   
(3)请你延长直线CD交x轴于点F.  ①求△COF的面积;
②在x轴上是否存在点P,使SOCP=SCOF?若存在,求出点P的坐标;若不存在,请说明理由.
15.
已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.
(1)求y1的解析式;
(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.
16.
已知:一次函数y=3x-2的图象与某反比例函数的图象的一个公共点的横坐标为1.
(1)(3分)求该反比例函数的解析式;
(2)(3分)将一次函数y=3x-2的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;
(3)(2分)请直接写出一个同时满足如下条件的函数解析式:
①函数的图象能由一次函数y=3x-2的图象绕点(0,-2)旋转一定角度得到;
②函数的图象与反比例函数的图象没有公共点.
17.
如图,△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)
(2)连接BD,求证:DE=CD.
18.
如图,已知AB=DE,且AB∥DE,BE=CF.求证:△ABC≌△DEF.
试卷分析
  • 【1】题量占比

    单选题:(4道)

    选择题:(3道)

    填空题:(4道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:9

    7星难题:0

    8星难题:2

    9星难题:4