1.单选题- (共8题)
7.
如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其中AB=BC.如果
,那么该数轴的原点O的位置应该在( )



A.点A的左边 |
B.点A与点B之间 C.点B与点C之间(靠近点B) |
C.点C的右边 |
2.填空题- (共10题)
3.解答题- (共7题)
19.
现有一批水果包装质量为每筐25千克,现抽取8框样品进行检测,结果称重记录如下(单位:千克):27,24,25,28,21,26,22,27.为了求得8筐样品的总质量,我们可以选取一个恰当的基准数进行化简计算。
(1)如果选择以25千克基准;用正、负数填写下表:
(2)这8筐水果的总质量是多少?
(1)如果选择以25千克基准;用正、负数填写下表:
原质量 | 27 | 24 | 25 | 28 | 21 | 26 | 22 | 27 |
与基准数的差 | ___ | ___ | ___ | ___ | ___ | ___ | ___ | ___ |
(2)这8筐水果的总质量是多少?
20.
如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+ (c-7)2=0.
(1)a= ,b= ,c= ;
(2)若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合;
(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.
则AB= ,AC= ,BC= .(用含t的代数式表示)
(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.

(1)a= ,b= ,c= ;
(2)若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合;
(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.
则AB= ,AC= ,BC= .(用含t的代数式表示)
(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
24.
如图,点A、B、C、D分别表示四个车站的位置.
(1) 用关于a、b的代数式表示A、C两站之间的距离是 ;(最后结果需化简)
(2) 若已知A、C两站之间的距离是12 km,求C、D两站之间的距离.
(1) 用关于a、b的代数式表示A、C两站之间的距离是 ;(最后结果需化简)
(2) 若已知A、C两站之间的距离是12 km,求C、D两站之间的距离.

25.
在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).
例如,从A到B记为:A→B(+l,+3);从C到D记为:C→D(+1,-2),
回答下列问题:
(1)如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.
(2)若点A运动的路线依次为:A→M(+2,+3),M→N(+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M、N、P、Q的位置.
(3)在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是 ;n与q满足的数量关系是 .

例如,从A到B记为:A→B(+l,+3);从C到D记为:C→D(+1,-2),
回答下列问题:
(1)如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.
(2)若点A运动的路线依次为:A→M(+2,+3),M→N(+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M、N、P、Q的位置.
(3)在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是 ;n与q满足的数量关系是 .


试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(10道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:10
7星难题:0
8星难题:4
9星难题:9