1.单选题- (共9题)
2.
“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( )
A. x(x+1)=210 B. x(x﹣1)=210
C. 2x(x﹣1)=210 D.
x(x﹣1)=210
A. x(x+1)=210 B. x(x﹣1)=210
C. 2x(x﹣1)=210 D.

4.
如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=
(k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D,QD交PA于点E,随着m的增大,四边形ACQE的面积( )



A.增大 | B.减小 |
C.先减小后增大 | D.先增大后减小 |
2.填空题- (共3题)
3.解答题- (共6题)
13.
计算:(1)(x+y)2﹣2x(x+y);
(2)(a+1)(a﹣1)﹣(a﹣1)2;
(3)先化简,再求值:(x+2y)(x﹣2y)﹣(2x3y﹣4x2y2)÷2xy,其中x=﹣3,y=
.
(2)(a+1)(a﹣1)﹣(a﹣1)2;
(3)先化简,再求值:(x+2y)(x﹣2y)﹣(2x3y﹣4x2y2)÷2xy,其中x=﹣3,y=

15.
如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).
(1)填空:PC= ,FC= ;(用含x的代数式表示)
(2)求△PEF面积的最小值;
(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.
(1)填空:PC= ,FC= ;(用含x的代数式表示)
(2)求△PEF面积的最小值;
(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.

16.
如图,抛物线
与
轴交于点
和
,与
轴交于点
.

(1)求抛物线的解析式;
(2)若点
是抛物线上在
轴下方的动点,过
作
轴交直线
于点
,求线段
的最大值;
(3)
是抛物线对称轴上一点,
是抛物线上一点,是否存在以
,
,
,
为顶点的四边形是平行四边形?若存在,请直接写出点
的坐标;若不存在,请说明理由.







(1)求抛物线的解析式;
(2)若点







(3)







17.
图①、图②都是4×4的正方形网格,每个小正方形的顶点为格点,每个小正方形的边长均为1.在图①、图②中已画出线段AB,点A、B均在格点上按下列要求画图:
(1)在图①中,以格点为顶点,AB为腰,画一个三边长都是无理数的等腰三角形;
(2)在图②中,以格点为顶点,AB为底的等腰三角形.
(1)在图①中,以格点为顶点,AB为腰,画一个三边长都是无理数的等腰三角形;
(2)在图②中,以格点为顶点,AB为底的等腰三角形.

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:7
7星难题:0
8星难题:1
9星难题:10