1.单选题- (共12题)
12.
骰子是6个面上分别写有数字1,2,3,4,5,6的小立方体,它任意两对面上所写的两个数字之和为7.将这样相同的几个骰子按照相接触的两个面上的数字的积为6摆成一个几何体,这个几何体的三视图如图所示.已知图中所标注的是部分面上的数字,则“*”所代表的数是()


A.2 | B.4 | C.5 | D.6 |
2.选择题- (共6题)
13.唐太宗对南朝后期竞相模仿萧子云书法的风气表示不屑,认为其“仅得成书,无丈夫之气”,只有王羲之的书法才“尽善尽美”,于是连西州(今吐鲁番)幼童习字的范本都是王羲之书帖。王羲之在中国书法史上地位的确立,是因为( )
14.唐太宗对南朝后期竞相模仿萧子云书法的风气表示不屑,认为其“仅得成书,无丈夫之气”,只有王羲之的书法才“尽善尽美”,于是连西州(今吐鲁番)幼童习字的范本都是王羲之书帖。王羲之在中国书法史上地位的确立,是因为( )
15.唐太宗对南朝后期竞相模仿萧子云书法的风气表示不屑,认为其“仅得成书,无丈夫之气”,只有王羲之的书法才“尽善尽美”,于是连西州(今吐鲁番)幼童习字的范本都是王羲之书帖。王羲之在中国书法史上地位的确立,是因为( )
16.唐太宗对南朝后期竞相模仿萧子云书法的风气表示不屑,认为其“仅得成书,无丈夫之气”,只有王羲之的书法才“尽善尽美”,于是连西州(今吐鲁番)幼童习字的范本都是王羲之书帖。王羲之在中国书法史上地位的确立,是因为( )
17.唐太宗对南朝后期竞相模仿萧子云书法的风气表示不屑,认为其“仅得成书,无丈夫之气”,只有王羲之的书法才“尽善尽美”,于是连西州(今吐鲁番)幼童习字的范本都是王羲之书帖。王羲之在中国书法史上地位的确立,是因为( )
3.填空题- (共7题)
4.解答题- (共8题)
26.
已知,A,B在数轴上对应的数分别用a,b表示,且(
ab+100)2+|a-20|=0, P是数轴上的一个动点.
(1)在数轴上标出A、B的位置,并求出A、B之间的距离.
(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.
(3)动点M从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7 个单位长度,…,点M能移动到与A或B重合的位置吗?若都不能,请直接回答,若能,请直接指出,第几次移动与哪一点重合.

(1)在数轴上标出A、B的位置,并求出A、B之间的距离.
(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.
(3)动点M从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7 个单位长度,…,点M能移动到与A或B重合的位置吗?若都不能,请直接回答,若能,请直接指出,第几次移动与哪一点重合.

28.
如图,四边形ABCD和四边形CEFG都是长方形,各边长如图示,连接BD、BF我们将得到一个美丽的“金枪鱼”图案,根据图中所标数据,请用含字母a和b的代数式表示“金枪鱼”(阴影部分)的面积。(结果要求化为最简)

29.
如果一个四位数的千位数字与十位数学相同,百位数字与个位数字相同,则称这个四位数为“循环四位数”,如1212,5252,6767, …等都是“循环四位数”,如果将一个“循环四位数”的百位数字与千位数字,个位数字与十位数字都交换位置,得到一个新四位数,我们把这个新四位数叫做“原循环四位数的对应数”,如果原循环四位数的百位数字是0,则忽略交换位置后首位的“0”,即它的对应数就是首位“0”忽略后的三位数,如1212的对应数为2121,5252的对应数为2525,1010的对应数为101.
(1)任意写一个“循环四位数”及它的“对应数”;猜想任意一个“循环四位数”与它的“对应数”的差是否都能被101整除?并说明理由;
(2)一个“循环四位数”的千位数字为x(1≤x≤9),百位数字为y(1≤y≤9,且y<x),若这个循环四位数与它的对应数的差能被404整除,求y与x应满足的数量关系.
(1)任意写一个“循环四位数”及它的“对应数”;猜想任意一个“循环四位数”与它的“对应数”的差是否都能被101整除?并说明理由;
(2)一个“循环四位数”的千位数字为x(1≤x≤9),百位数字为y(1≤y≤9,且y<x),若这个循环四位数与它的对应数的差能被404整除,求y与x应满足的数量关系.
31.
常州每年举行一次“一袋牛奶的暴走”公益活动,用步行的方式募集善款,其中挑战型路线”的起点是淹城站,并沿着规定的线路到达终点吾悦国际站.甲、乙两组市民从起点同时出发,已知甲组的速度为6km/h,乙组的速度为5km/h,当甲组到达终点后,立即以3km/h的速度按原线路返回,并在途中的P站与乙组相遇,P站与吾悦国际站之间的路程为1.5km
(1)求“挑战型路线”的总长;
(2)当甲组到达终点时,乙组离终点还有多少路程?
(1)求“挑战型路线”的总长;
(2)当甲组到达终点时,乙组离终点还有多少路程?

试卷分析
-
【1】题量占比
单选题:(12道)
选择题:(6道)
填空题:(7道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:20
7星难题:0
8星难题:2
9星难题:5