1.单选题- (共7题)
3.
已知二次函数y=x2-2mx+m2+1(m为常数),当自变量x的值满足-3≤x≤-1时,与其对应的函数值y的最小值为5,则m的值为( )
A.1或-3 | B.-3或-5 | C.1或-5 | D.1或-1 |
2.填空题- (共9题)
15.
如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为________.

16.
如图,已知点A的坐标为(
,3),AB⊥x轴,垂足为B,连接OA,反比例函数y=
(k>O,x>O)的图象与线段OA、OB分别交于点C、D,过点C作CE⊥x轴于



A.若AB=3BD,则△COE的面积为______. |

3.解答题- (共7题)
20.
如图,一次函数y=kx+b(k≠0)与反比例函数y=
(m≠0)的图象相交于A(2,3),B(-3,m)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>
的解集;
(3)过点B作BC⊥x轴,垂足为点C,求S△ABC.

(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>

(3)过点B作BC⊥x轴,垂足为点C,求S△ABC.

21.
某水果店经销一种高档水果,售价为每千克50元
(1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;
(2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?
(1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;
(2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?
22.
如图,已知抛物线y=ax2+bx+c与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点C(0,2),
(1)求抛物线的函数表达式;
(2)如图,在抛物线对称轴上取两个点G、H(G在H的上方),且满足GH=1,连接CG,AH,求四边形CGHA的周长的最小值;
(3)如图,点P是抛物线第一象限的一个动点,过点P作PQ⊥x轴于点Q,交BC于点D,PE⊥BC于点E,设△PDE的面积为S,求当S取得最大值时点P的坐标,并求S的最大值.
(1)求抛物线的函数表达式;
(2)如图,在抛物线对称轴上取两个点G、H(G在H的上方),且满足GH=1,连接CG,AH,求四边形CGHA的周长的最小值;
(3)如图,点P是抛物线第一象限的一个动点,过点P作PQ⊥x轴于点Q,交BC于点D,PE⊥BC于点E,设△PDE的面积为S,求当S取得最大值时点P的坐标,并求S的最大值.

试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(9道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:15
7星难题:0
8星难题:2
9星难题:4