江苏省苏州市2016-2017学年高一下学期期末备考试题分类汇编:函数的应用数学试题

适用年级:高一
试卷号:557279

试卷类型:专题练习
试卷考试时间:2017/8/28

1.填空题(共1题)

1.
某公司在甲、乙两地销售同一种品牌的汽车,利润(单位:万元)分别为,其中为销售量(单位:辆).若该公司在两地共销售15辆汽车,则该公司能获得的最大利润为_____万元.

2.解答题(共5题)

2.
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为个,零件的实际出厂单价为元.写出函数的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
3.
(2011年苏州19)某市居民自来水收费标准如下:当每户每月用水不超过4吨时,每吨为1.8元;当用水超过4吨时,超过部分每吨3元.
(1)记单户水费为(单位:元),用水量为(单位:吨),写出关于的函数的解析式;
(2)若甲、乙两户该月共交水费26.4元,甲、乙两户用水量值之比为5:3,请分别求出甲乙两户该月的用水量和水费.
4.
(2015年苏州18)根据市场调查,某种新产品投放市场的30天内,每件销售价格P (元)与时间t (天 )的关系满足下图,日销量Q (件)与时间t(天)之间的关系是
(1)写出该产品每件销售价格P与时间t的函数关系式;
(2)在这30天内,哪一天的日销售金额最大?
(日销量金额=每件产品销售价格×日销量)
5.
某厂生产某种产品(百台),总成本为(万元),其中固定成本为2万元, 每生产1百台,成本增加1万元,销售收入(万元),假定该产品产销平衡。
(1)若要该厂不亏本,产量应控制在什么范围内?
(2)该厂年产多少台时,可使利润最大?
(3)求该厂利润最大时产品的售价。
6.
(2014年苏州B19)在平面直角坐标系中,将从点出发沿纵、横方向到达点的任一路径称为的一条“折线路径”,所有“折线路径”中长度最小的称为的“折线距离” .如图所示的路径与路径都是的“折线路径”.某地有三个居民区分别位于平面内三点,现计划在这个平面上某一点处修建一个超市.
(1)请写出点到居民区的“折线距离”的表达式(用表示,不要求证明);
(2)为了方便居民,请确定点的位置,使其到三个居民区的“折线距离”之和最小.
试卷分析
  • 【1】题量占比

    填空题:(1道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:6