1.推断题- (共1题)
1.
有机物M(C25H44O8)是一种新型治疗高血压病的药物,工业上用淀粉、烃A为基本原料合成M的路线如下图所示。
已知:
I.烃A在质谱图中的最大质荷比为72,B分子中核磁共振氢谱有2个峰且面积比为9:2,35%-40%的F的水溶液被称为福尔马林。
II.
(1)A的名称为__________(系统命名法),B的结构简式为_______________,F的分子式为_____________;
(2)B→C的反应条件是______________,G的官能团名称是_____________;
(3)D与银氨溶液反应的方程式_____________________;
(4)E与H反应生成M的方程式___________________;
(5)E有多种同分异构体,其中能发生银镜反应且属于酯类的同分异构体共有____________种,其中核磁共振氢谱有2个峰的物质结构简式为________________。

I.烃A在质谱图中的最大质荷比为72,B分子中核磁共振氢谱有2个峰且面积比为9:2,35%-40%的F的水溶液被称为福尔马林。
II.

(1)A的名称为__________(系统命名法),B的结构简式为_______________,F的分子式为_____________;
(2)B→C的反应条件是______________,G的官能团名称是_____________;
(3)D与银氨溶液反应的方程式_____________________;
(4)E与H反应生成M的方程式___________________;
(5)E有多种同分异构体,其中能发生银镜反应且属于酯类的同分异构体共有____________种,其中核磁共振氢谱有2个峰的物质结构简式为________________。
2.单选题- (共3题)
2.
以铬酸钾(右室起始加入0.4molK2CrO4)为原料,电化学法制备重铬酸钾的实验装置示意图如下,下列说法正确的是


A.在阳极室,通电后溶液逐渐由橙色变为黄色 |
B.电路中有0.2mol电子通过时,阳极与阴极溶液减少的质量差为1.4g |
C.若测得右室中K与Cr的物质的量之比为3:2,则此过程电路中共转移电子数为0.1NA |
D.若测定阳极液中K与Cr的物质的量之比为d,则此时铬酸钾的转化率为2-d |
3.
三位分别来自法国、美国、荷兰的科学家因研究“分子机器的设计与合成”而获得2016年诺贝尔化学奖。纳米分子机器日益受到关注,机器的“车轮”常用组件如下。下列说法正确的是( )


A.①③均能发生加成反应 | B.①④互为同分异构体 |
C.①②③④均属于烃 | D.①②③④的一氯代物均只有1种 |
4.
四种短周期元素A、B、C、D在元素周期表中的相对位置如图所示,其中D形成的两种氧化物都是常见大气污染物。下列有关判断不正确的是( )

A. 简单氢化物的热稳定性:C B. A、C、D的含氧酸的钠盐水溶液均显碱性
C. 单质B可用于铁轨的焊接 D. 最高价氧化物对应水化物的酸性:D>C

A. 简单氢化物的热稳定性:C B. A、C、D的含氧酸的钠盐水溶液均显碱性
C. 单质B可用于铁轨的焊接 D. 最高价氧化物对应水化物的酸性:D>C
3.填空题- (共2题)
5.
乙炔是重要的化工原料,广泛用于有机合成和氧炔焊等。生产乙炔的方法有多种,如电石法、甲烷裂解法等。
(1)在Co(NO3)2催化下,乙炔可被50%的浓硝酸(硝酸被还原为NO2)在20~70℃时直接氧化为H2C2O4·2H2O。
①该反应的化学方程式为________________________;
②实际生产中硝酸可循环利用而不被消耗,用方程式说明:___________________。
(2)电石法原理为:由石油焦与生石灰在电炉中生成电石CaC2(含Ca3P2、CaS等杂质), 电石与水反应生成C2H4(含PH3及H2S等杂质)。
①已知焦炭固体与氧化钙固体每生成l g CaC2固体,同时生成CO气体吸收7.25kJ的 热量,则该反应的热化学方程式为_____________________________________;
②用CuSO4溶液净化乙炔气体,去除PH3的反应之一为:4CuSO4+PH3+4H2O===4Cu↓+H3PO4+4H2SO4,每去除1 mol PH3,该反应中转移电子的物质的量为__________;
③反应H2S(aq)+Cu2+(aq)===CuS(s)+2H+(aq)的平衡常数为________________;(已知Ksp(CuS)=1.25×10-36,H2S的Kal=1×10-7,Ka2=1×10-13)
④电石法工艺流程简单、容易操作、乙炔纯度高,缺点是_______(举1例)。
(3)甲烷裂解法原理为:2CH4(g)
C2H2(g)+3H2(g)△H,实验测得该反应的Kp(用平衡分压代替浓度计算的平衡常数,分压=总压×物质的量分数)与温度的关系如图所示:

①该反应的△H________0(填“>”、“=”或“<”);
②图中G点v(正)______v(逆)(填“>”、“=”或“<”);
③M点时,若容器中气体的总物质的量为1 mol,则总压P与n(CH4)、n(C2H2)及n(H2)之间的关系为_________。
(1)在Co(NO3)2催化下,乙炔可被50%的浓硝酸(硝酸被还原为NO2)在20~70℃时直接氧化为H2C2O4·2H2O。
①该反应的化学方程式为________________________;
②实际生产中硝酸可循环利用而不被消耗,用方程式说明:___________________。
(2)电石法原理为:由石油焦与生石灰在电炉中生成电石CaC2(含Ca3P2、CaS等杂质), 电石与水反应生成C2H4(含PH3及H2S等杂质)。
①已知焦炭固体与氧化钙固体每生成l g CaC2固体,同时生成CO气体吸收7.25kJ的 热量,则该反应的热化学方程式为_____________________________________;
②用CuSO4溶液净化乙炔气体,去除PH3的反应之一为:4CuSO4+PH3+4H2O===4Cu↓+H3PO4+4H2SO4,每去除1 mol PH3,该反应中转移电子的物质的量为__________;
③反应H2S(aq)+Cu2+(aq)===CuS(s)+2H+(aq)的平衡常数为________________;(已知Ksp(CuS)=1.25×10-36,H2S的Kal=1×10-7,Ka2=1×10-13)
④电石法工艺流程简单、容易操作、乙炔纯度高,缺点是_______(举1例)。
(3)甲烷裂解法原理为:2CH4(g)


①该反应的△H________0(填“>”、“=”或“<”);
②图中G点v(正)______v(逆)(填“>”、“=”或“<”);
③M点时,若容器中气体的总物质的量为1 mol,则总压P与n(CH4)、n(C2H2)及n(H2)之间的关系为_________。
6.
自然界中不存在氟的单质,得到单质氟共经历了一百多年时间,不少科学家为此献出了宝贵的生命,在1886年法国的化学家Moissa终于发明了摩式电炉,用电解法成功的制取了单质氟,因此荣获1906年诺贝尔化学奖,氟及其化合物在生产及生活中有着广泛的用途,请回答下列问题:
(1)氟磷灰石可用于制取磷肥,其中Ca原子的L层电子排布式为___________。P原子有___________个未成对电子,PO43-的中心P原子的杂化方式为___________。
(2)氟气可以用于制取火箭燃料的氧化剂ClF3和BrF3,其中沸点较高的是_____________(填化学式),原因是_____________。
(3)氟气可以用于制取惰性强于N2的保护气SF6;可以用于制取聚合反应的催化剂PF3,可以作为工业制取硅单质的中间(SiCl4)的原料。
①SiCl4分子的空间构型为_________________。
②S、P、Si的第一电离由大到小的顺序为__________________。
(4)氟气可以用于制取高化学稳定性材料聚四氟乙烯的原料四氟乙烯,50g四氟乙烯含σ键的数目为________________。
(5)工业上电解Al2O3制取单质铝,常利用冰晶石NaAlF6降低Al2O3的熔点。Na、Al、F的电负性由小到大的顺序为______________,工业上不用电解AlCl3制取铝的原因为________________。
(6)已知CaF2晶体常用于助熔剂,其晶胞结构如图所示。

已知F原子和Ca原子之间的距离为apm,在晶胞体对角线的1/4、3/4两点分别有一个F-,阿伏加德罗常数为NA,则晶体的密度为_____________。
(1)氟磷灰石可用于制取磷肥,其中Ca原子的L层电子排布式为___________。P原子有___________个未成对电子,PO43-的中心P原子的杂化方式为___________。
(2)氟气可以用于制取火箭燃料的氧化剂ClF3和BrF3,其中沸点较高的是_____________(填化学式),原因是_____________。
(3)氟气可以用于制取惰性强于N2的保护气SF6;可以用于制取聚合反应的催化剂PF3,可以作为工业制取硅单质的中间(SiCl4)的原料。
①SiCl4分子的空间构型为_________________。
②S、P、Si的第一电离由大到小的顺序为__________________。
(4)氟气可以用于制取高化学稳定性材料聚四氟乙烯的原料四氟乙烯,50g四氟乙烯含σ键的数目为________________。
(5)工业上电解Al2O3制取单质铝,常利用冰晶石NaAlF6降低Al2O3的熔点。Na、Al、F的电负性由小到大的顺序为______________,工业上不用电解AlCl3制取铝的原因为________________。
(6)已知CaF2晶体常用于助熔剂,其晶胞结构如图所示。

已知F原子和Ca原子之间的距离为apm,在晶胞体对角线的1/4、3/4两点分别有一个F-,阿伏加德罗常数为NA,则晶体的密度为_____________。
4.实验题- (共2题)
7.
三氯氧磷(化学式:POCl3)常用作半导体掺杂剂及光导纤维原料。氯化水解法生产三氯氧磷的流程如下:

(1)氯化水解法生产三氯氧磷的化学方程式为______________________。
(2)氯化水解法生产三氯氧磷时,会产生含磷(主要为H3PO3、H3PO4等)废水,已知H3PO3是一种淡黄色晶体,且易溶于水的二元弱酸。
①若用20 mL H3PO3溶液与同浓度的NaOH溶液40 mL恰好完全反应,写出生成盐为_______(填“正盐”或“酸式盐”)。
②H3PO3中,P元素的化合价为_______。H3PO3可以将溶液中的Ag+还原,从而用于化学镀银,写出该离子方程式__________________。
③处理废水时,先在其中加入适量漂白粉,再加入生石灰调节pH将磷元素转化为磷酸钙沉淀并回收,加入漂白粉的作用是_________________。
④若处理后的废水中c(PO43-)=4×10-7 mol·L-1,溶液中c(Ca2+)=__________mol·L-1。(已知Ksp[Ca3(PO4)2]=2×10-29)
(3)通过佛尔哈德法可以测定三氯氧磷产品中Cl元素含量,实验步骤如下:
Ⅰ.取a g产品于锥形瓶中,加入足量NaOH溶液,待完全水解后加稀硝酸至酸性。
Ⅱ.向锥形瓶中加入0.1000 mol·L-1的AgNO3溶液40.00 mL,使Cl-完全沉淀。
Ⅲ.向其中加入2 mL硝基苯,用力摇动,使沉淀表面被有机物覆盖。
Ⅳ.加入指示剂,用c mol·L-1 NH4SCN溶液滴定过量Ag+至终点,记下所用体积。
已知:Ksp(AgCl)=3.2×10-10,Ksp(AgSCN)=2×10-12
①滴定选用的指示剂是_____________(选填字母)。
a.FeCl2 b.NH4Fe(SO4)2 c.淀粉 d.甲基橙
②实验过程中若未加入硝基苯这项操作,所测Cl元素含量将会____________(填“偏大”、“偏小”或“不变”)。

(1)氯化水解法生产三氯氧磷的化学方程式为______________________。
(2)氯化水解法生产三氯氧磷时,会产生含磷(主要为H3PO3、H3PO4等)废水,已知H3PO3是一种淡黄色晶体,且易溶于水的二元弱酸。
①若用20 mL H3PO3溶液与同浓度的NaOH溶液40 mL恰好完全反应,写出生成盐为_______(填“正盐”或“酸式盐”)。
②H3PO3中,P元素的化合价为_______。H3PO3可以将溶液中的Ag+还原,从而用于化学镀银,写出该离子方程式__________________。
③处理废水时,先在其中加入适量漂白粉,再加入生石灰调节pH将磷元素转化为磷酸钙沉淀并回收,加入漂白粉的作用是_________________。
④若处理后的废水中c(PO43-)=4×10-7 mol·L-1,溶液中c(Ca2+)=__________mol·L-1。(已知Ksp[Ca3(PO4)2]=2×10-29)
(3)通过佛尔哈德法可以测定三氯氧磷产品中Cl元素含量,实验步骤如下:
Ⅰ.取a g产品于锥形瓶中,加入足量NaOH溶液,待完全水解后加稀硝酸至酸性。
Ⅱ.向锥形瓶中加入0.1000 mol·L-1的AgNO3溶液40.00 mL,使Cl-完全沉淀。
Ⅲ.向其中加入2 mL硝基苯,用力摇动,使沉淀表面被有机物覆盖。
Ⅳ.加入指示剂,用c mol·L-1 NH4SCN溶液滴定过量Ag+至终点,记下所用体积。
已知:Ksp(AgCl)=3.2×10-10,Ksp(AgSCN)=2×10-12
①滴定选用的指示剂是_____________(选填字母)。
a.FeCl2 b.NH4Fe(SO4)2 c.淀粉 d.甲基橙
②实验过程中若未加入硝基苯这项操作,所测Cl元素含量将会____________(填“偏大”、“偏小”或“不变”)。
8.
某学生探究如下实验(A):
(1)使淀粉变蓝的物质是____。
(2)分析现象i、ii认为:在酸性条件下,加热促进淀粉水解,冷却后平衡逆向移动。
设计实验如下,“现象a”证实该分析不合理:

“现象a”是____。
(3)再次分析:加热后单质碘发生了变化,实验如下:
I:取少量碘水,加热至褪色,用淀粉溶液检验挥发出的物质,变蓝。
Ⅱ:向褪色后的溶液中滴加淀粉溶液,冷却过程中一直未变蓝;加入稀H2SO4,瞬间变蓝。
对步骤Ⅱ中稀H2SO4的作用,结合离子方程式,提出一种合理的解释:______________。
(4)探究碘水褪色后溶液的成分:
实验1:测得溶液的pH≈5
实验2:取褪色后的溶液,完成如下实验:

①产生黄色沉淀的离子方程式是____。
②Ag2O的作用是____________。
③依据上述实验,推测滤液中含有的物质(或离子)可能是_________。
(5)结合化学反应速率解释实验A中现象i、现象iii蓝色褪去的原因:_______________。
实验A | 条件 | 现象 |
![]() | 加热 | i.加热后蓝色褪去 ii.冷却过程中,溶液恢复蓝色 ⅲ.一段时间后,蓝色重又褪去 |
(1)使淀粉变蓝的物质是____。
(2)分析现象i、ii认为:在酸性条件下,加热促进淀粉水解,冷却后平衡逆向移动。
设计实验如下,“现象a”证实该分析不合理:

“现象a”是____。
(3)再次分析:加热后单质碘发生了变化,实验如下:
I:取少量碘水,加热至褪色,用淀粉溶液检验挥发出的物质,变蓝。
Ⅱ:向褪色后的溶液中滴加淀粉溶液,冷却过程中一直未变蓝;加入稀H2SO4,瞬间变蓝。
对步骤Ⅱ中稀H2SO4的作用,结合离子方程式,提出一种合理的解释:______________。
(4)探究碘水褪色后溶液的成分:
实验1:测得溶液的pH≈5
实验2:取褪色后的溶液,完成如下实验:

①产生黄色沉淀的离子方程式是____。
②Ag2O的作用是____________。
③依据上述实验,推测滤液中含有的物质(或离子)可能是_________。
(5)结合化学反应速率解释实验A中现象i、现象iii蓝色褪去的原因:_______________。
试卷分析
-
【1】题量占比
推断题:(1道)
单选题:(3道)
填空题:(2道)
实验题:(2道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:5
5星难题:0
6星难题:3
7星难题:0
8星难题:0
9星难题:0