1.单选题- (共11题)
1.
二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0②9a+c>3b;③8a+7b+2c>0④若点A(﹣3,y1),点B(﹣2,y2),点C(8,y3)在该函数图象上,则y1<y3<y2⑤若方程a(x﹣1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣l<5<x2,其中正确的结论有( )


A.2个 | B.3个 | C.4个 | D.5个 |
3.
已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的结论有( )


A.①③ | B.②③ | C.①④ | D.②④ |
5.
已知二次函数y=﹣(x﹣a)(x﹣b),其中a<b,m、n(m<n)是方程1﹣(x﹣a)(x﹣b)=0的两个根,则实数a、b、m、n的大小关系是( )
A.a<m<n<b | B.m<a<b<n | C.a<m<b<n | D.m<a<n<b |
6.
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:(1)b2﹣4ac>0;(2)abc>0;(3)8a+c>0;(4)6a+3b+c>0,其中正确的结论的个数是( )


A.4 | B.3 | C.2 | D.1 |
8.
抛物线
的部分图象如图所示,与x轴的一个交点坐标为
,抛物线的对称轴是
下列结论中:
;
;
方程
有两个不相等的实数根;
抛物线与x轴的另一个交点坐标为
;
若点
在该抛物线上,则
.
其中正确的有














其中正确的有



A.5个 | B.4个 | C.3个 | D.2个 |
10.
已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:
C. 直线x=1 D. 直线x=
x | ﹣1 | 0 | 1 | 2 | 3 |
y | 5 | 1 | ﹣1 | ﹣1 | 1 |
则该二次函数图象的对称轴为( )
A. y轴 B. 直线x=

2.填空题- (共5题)
13.
如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=
,且经过点(2,0),下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(
,y1)、(
,y2)是抛物线上的两点,则y1<y2;⑤
>m(am+b)(其中m≠
).其中说法正确的是_____






3.解答题- (共5题)
17.
已知二次函数y=x2﹣2x﹣1.
(1)请在表内的空格中填入适当的数;
(2)根据列表,请在所给的平面直角坐标系中画出y=x2﹣2x﹣1的图象;
(3)当x在什么范围内时,y随x增大而减小;
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | | | | | | … |
(1)请在表内的空格中填入适当的数;
(2)根据列表,请在所给的平面直角坐标系中画出y=x2﹣2x﹣1的图象;
(3)当x在什么范围内时,y随x增大而减小;

18.
某店只销售某种进价为40元/kg的产品,已知该店按60元kg出售时,每天可售出100kg,后来经过市场调查发现,单价每降低1元,则每天的销售量可增加10kg.
(1)若单价降低2元,则每天的销售量是_____千克,每天的利润为_____元;若单价降低x元,则每天的销售量是_____千克,每天的利润为______元;(用含x的代数式表示)
(2)若该店销售这种产品计划每天获利2240元,单价应降价多少元?
(3)当单价降低多少元时,该店每天的利润最大,最大利润是多少元?
(1)若单价降低2元,则每天的销售量是_____千克,每天的利润为_____元;若单价降低x元,则每天的销售量是_____千克,每天的利润为______元;(用含x的代数式表示)
(2)若该店销售这种产品计划每天获利2240元,单价应降价多少元?
(3)当单价降低多少元时,该店每天的利润最大,最大利润是多少元?
19.
建立适当的坐标系,运用函数知识解决下面的问题:
如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E到桥下水面的距离EF为3米时,水面宽AB为6米,一场大雨过后,河水上涨,水面宽度变为CD,且CD=2
米,此时水位上升了多少米?
如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E到桥下水面的距离EF为3米时,水面宽AB为6米,一场大雨过后,河水上涨,水面宽度变为CD,且CD=2


试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:17
7星难题:0
8星难题:3
9星难题:0