1.单选题- (共3题)
2.填空题- (共3题)
6.
如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,则下列结论: ①AE⊥AF;②EF:AF=
:1;③AF2=FH•FE;④FB:FC=HB:EC.正确的是___.


3.解答题- (共6题)
9.
某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价1元,每天的销售量会减少4件.
(1)当售价定为多少元时,每天的利润为140元?
(2)写出每天所得的利润y(元)与售价x(元件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价﹣进价)×售出件数)
(1)当售价定为多少元时,每天的利润为140元?
(2)写出每天所得的利润y(元)与售价x(元件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价﹣进价)×售出件数)
10.
如图,在Rt△ABC中,∠C=90°,AB=6,AD是∠BAC的平分线,经过A、D两点的圆的圆心O恰好落在AB上,⊙O分别与AB、AC相交于点E、F.若⊙O的半径为2.求阴影部分的面积.

11.
如图,直线11∥l2,⊙O与11和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.
(1)当MN与⊙O相切时,求AM的长;
(2)当∠MON为多少度时,MN与⊙O相切,并给出证明.
(1)当MN与⊙O相切时,求AM的长;
(2)当∠MON为多少度时,MN与⊙O相切,并给出证明.

试卷分析
-
【1】题量占比
单选题:(3道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:4
5星难题:0
6星难题:6
7星难题:0
8星难题:0
9星难题:2