1.单选题- (共10题)
1.
如图所示,两块水平放置的平行金属板间距为d,定值电阻的阻值为R,竖直放置线圈的匝数为n,绕制线圈导线的电阻为R,其他导线的电阻忽略不计.现在竖直向上的磁场B穿过线圈,在两极板中一个质量为m,电量为q,带正电的油滴恰好处于静止状态,则磁场B的变化情况是( )


A.均匀增大,磁通量变化率的大小为![]() |
B.均匀增大,磁通量变化率的大小为![]() |
C.均匀减小,磁通量变化率的大小为![]() |
D.均匀减小,磁通量变化率的大小为![]() |
2.
如图甲所示,有一个等腰直角三角形的匀强磁场区域,其直角边长为L,磁场方向垂直纸面向外,磁感应强度大小为B。一边长为L、总电阻为R的正方形导线框abcd,从图示位置开始沿x轴正方向以速度υ匀速穿过磁场区域。取沿abcda的感应电流为正,则图中表示线框中电流i随bc边的位置坐标x变化的图象正确的是 ( )

A.
B.
C.
D. 

A.




3.
纸面内有U形金属导轨,AB部分是直导线(如图所示).虚线范围内有垂直于纸面向里的匀强磁场.AB右侧有圆线圈C.为了使C中产生顺时针方向的感应电流,紧贴导轨的金属棒MN在磁场里的运动情况是( )

A. 向右匀速运动
B. 向左匀速运动
C. 向右加速运动
D. 向右减速运动

A. 向右匀速运动
B. 向左匀速运动
C. 向右加速运动
D. 向右减速运动
5.
一面积S=4.0×10-2m2、匝数n=100匝的线圈放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B的大小随时间按如图所示的规律变化,则( )


A.在开始2s内穿过线圈的磁通量的变化量等于零 |
B.开始2s内穿过线圈的磁通量的变化量![]() |
C.在开始2s内线圈中产生的感应电动势E=0.08v |
D..在第3s末感应电动势等于零 |
6.
运用电磁感应原理进行信号转换.如图所示,磁带录音机既可用来录音,也可用来放音,其主要部件为可匀速行进的磁带a和绕有线圈的磁头b,不论是录音或放音过程,磁带或磁隙软铁都存在磁化现象.下面关于它们在录音、放音过程中主要工作原理的说法,正确的是( )


A.放音的主要原理是电磁感应,录音的主要原理是电流的磁效应 |
B.录音的主要原理是电磁感应,放音的主要原理是电流的磁效应 |
C.放音和录音的主要原理都是电流的磁效应 |
D.放音和录音的主要原理都是电磁感应 |
7.
为一金属杆,它处在如图所示的垂直于纸面向里的匀强磁场中,可绕
点在纸面内转动;
为以
为圆心位于纸面内的金属圆环;在杆转动过程中,杆的
端与金属环保持良好接触;
为电流表,其一端与金属环相连,一端与
点良好接触。当杆沿逆时针方向转动时,某时刻
杆的位置如图,则此时刻( )










A.有电流通过电流表,方向由![]() ![]() |
B.有电流通过电流表,方向由![]() ![]() |
C.有电流通过电流表,方向由![]() ![]() |
D.无电流通过电流表,作用于![]() |
8.
图为地磁场磁感线的示意图,在南半球磁场的竖直分量向上,飞机MH370最后在南印度洋消失,由于地磁场的作用,金属机翼上有电势差,设飞行员左方机翼末端处的电势为φ1,右方机翼末端处的电势为φ2,则在南印洋上时( )


A.若飞机从西往东飞,φ1比φ2高 |
B.若飞机从东往西飞,φ2比φ1高 |
C.若飞机从北往南飞,φ1比φ2高 |
D.若飞机从南往北飞,φ1比φ2高 |
9.
下列说法中正确的是( )
A.电饭锅中的敏感元件是光敏电阻 |
B.测温仪中的测温元件可以是热敏电阻 |
C.机械式鼠标中的传感器接收到连续的红外线,输出不连续的电脉冲 |
D.火灾报警器中的光传感器在没有烟雾时呈现低电阻状态,有烟雾时呈现高电阻状态 |
2.多选题- (共3题)
11.
如图所示,足够长且电阻不计的光滑平行金属导轨MN、PQ竖直放置,间距为L=0.5 m,一匀强磁场磁感应强度B=0.2T垂直穿过导轨平面,导轨的上端M与P间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻不计的金属棒ab垂直紧贴在导轨上。现使金属棒ab由静止开始下滑,经过一段时间金属棒达到稳定状态,这段时间内通过R的电荷量为0.3 C,则在这一过程中(g=10 m/s2)( )


A.安培力最大值为0.05N |
B.这段时间内下降的高度1.2m |
C.重力最大功率为0.1W |
D.电阻产生的焦耳热为0.04J |
12.
(多选)在光滑的水平面上方,有两个磁感应强度大小均为B、方向相反的水平匀强磁场,如图9所示.PQ为两个磁场的边界,磁场范围足够大.一个边长为a、质量为m、电阻为R的金属正方形线框,以速度v垂直磁场方向从图中实线位置开始向右运动,当线框运动到分别有一半面积在两个磁场中时,速度为
,则下列说法正确的是( )

A. 此过程中通过线框横截面的电荷量为2Ba2/R
B. 此时线框的加速度为B2a2v/2mR
C. 此过程中回路产生的电能为
mv2
D. 此时线框中的电功率为4B2a2v2/R


A. 此过程中通过线框横截面的电荷量为2Ba2/R
B. 此时线框的加速度为B2a2v/2mR
C. 此过程中回路产生的电能为

D. 此时线框中的电功率为4B2a2v2/R
13.
如图所示,P、Q是两个完全相同的灯泡,L是电阻为零的纯电感,且自感系数L很大。C是电容较大且不漏电的电容器,下列判断正确的是( )


A.S闭合时,P灯亮后逐渐熄灭,Q灯逐渐变亮 |
B.S闭合时,P灯、Q灯同时亮,然后P灯变暗,Q灯变得更亮 |
C.S闭合,电路稳定后,S断开时,P灯突然亮一下,然后熄灭,Q灯立即熄灭 |
D.S闭合,电路稳定后,S断开时,P灯突然亮一下,然后熄灭,Q灯逐渐熄灭 |
3.填空题- (共1题)
14.
把一个用丝线悬挂的铅球放在电路中的线圈上方,如图所示,在下列三种情况下,悬挂铅球的丝线所受的拉力与铅球不在线圈上方时比较:

(1)当滑动变阻器的滑片向右移动时,拉力__________.
(2)当滑片向左移动时,拉力______________.
(3)当滑片不动时,拉力____________.(填“变大”、“不变”或“变小”)

(1)当滑动变阻器的滑片向右移动时,拉力__________.
(2)当滑片向左移动时,拉力______________.
(3)当滑片不动时,拉力____________.(填“变大”、“不变”或“变小”)
4.解答题- (共9题)
15.
如图所示,竖直向上的匀强磁场在初始时刻的磁感应强度B0=0.5T,并且以
=1T/s在增加,水平导轨的电阻和摩擦阻力均不计,导轨宽为0.5m,左端所接电阻R=0.4Ω。在导轨上l=1.0m处的右端搁一金属棒ab,其电阻R0=0.1Ω,并用水平细绳通过定滑轮吊着质量为M=2kg的重物,欲将重物吊起,问:

(1)感应电流的方向(请将电流方向标在本题图上)以及感应电流的大小;
(2)经过多长时间能吊起重物。


(1)感应电流的方向(请将电流方向标在本题图上)以及感应电流的大小;
(2)经过多长时间能吊起重物。
16.
如图(a)所示,一端封闭的两条平行光滑导轨相距L,距左端L处的中间一段被弯成 半径为H的1/4圆弧,导轨左右两段处于高度相差H的水平面上。圆弧导轨所在区域无磁场,右段区域存在磁场B0,左段区域存在均匀分布但随时间线性变化的磁场B(t),如图(b)所示,两磁场方向均竖直向上。在圆弧顶端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t0滑到圆弧底端。设金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g。

⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?
⑵求0到时间t0内,回路中感应电流产生的焦耳热量。
⑶探讨在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,回路中感应电流的大小和方向。

⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?
⑵求0到时间t0内,回路中感应电流产生的焦耳热量。
⑶探讨在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,回路中感应电流的大小和方向。
17.
如图所示,AB和CD是足够长的平行光滑导轨,其间距为l,导轨平面与水平面的夹角为θ。整个装置处在磁感应强度为B、方向垂直于导轨平面且向上的匀强磁场中。AC端连有阻值为R的电阻。若将一质量为M、垂直于导轨的金属棒EF在距BD端s处由静止释放,则棒滑至底端前会有加速和匀速两个运动阶段。现用大小为F、方向沿斜面向上的恒力把金属棒EF从BD位置由静止推至距BD端s处,此时撤去该力,金属棒EF最后又回到BD端。求:

(1)金属棒下滑过程中的最大速度,有多少电能转化成了内能?(金属棒及导轨的电阻不计)
(2)金属棒棒自BD端出发又回到BD端的整个过程中,有多少电能转化成了内能?

(1)金属棒下滑过程中的最大速度,有多少电能转化成了内能?(金属棒及导轨的电阻不计)
(2)金属棒棒自BD端出发又回到BD端的整个过程中,有多少电能转化成了内能?
18.
(本大题18分)如图(A)所示,固定于水平桌面上的金属架cdef,处在一竖直向下的匀强磁场中,磁感强度的大小为B0,金属棒ab搁在框架上,可无摩擦地滑动,此时adeb构成一个边长为l的正方形,金属棒的电阻为r,其余部分的电阻不计。从t=0的时刻起,磁场开始均匀增加,磁感强度变化率的大小为k(k=
)。求:

(1)用垂直于金属棒的水平拉力F使金属棒保持静止,写出F的大小随时间t变化的关系式。
(2)如果竖直向下的磁场是非均匀增大的(即k不是常数),金属棒以速度v0向什么方向匀速运动时,可使金属棒中始终不产生感应电流,写出该磁感强度Bt随时间t变化的关系式。
(3)如果非均匀变化磁场在0—t1时间内的方向竖直向下,在t1—t2时间内的方向竖直向上,若t=0时刻和t1时刻磁感强度的大小均为B0,且adeb的面积均为l2。当金属棒按图(B)中的规律运动时,为使金属棒中始终不产生感应电流,请在图(C)中示意地画出变化的磁场的磁感强度Bt随时间变化的图像(t1-t0=t2-t1<
)


(1)用垂直于金属棒的水平拉力F使金属棒保持静止,写出F的大小随时间t变化的关系式。
(2)如果竖直向下的磁场是非均匀增大的(即k不是常数),金属棒以速度v0向什么方向匀速运动时,可使金属棒中始终不产生感应电流,写出该磁感强度Bt随时间t变化的关系式。
(3)如果非均匀变化磁场在0—t1时间内的方向竖直向下,在t1—t2时间内的方向竖直向上,若t=0时刻和t1时刻磁感强度的大小均为B0,且adeb的面积均为l2。当金属棒按图(B)中的规律运动时,为使金属棒中始终不产生感应电流,请在图(C)中示意地画出变化的磁场的磁感强度Bt随时间变化的图像(t1-t0=t2-t1<

19.
一有界匀强磁场区域如图甲所示,质量为m、电阻为R的长方形矩形线圈abcd边长分别为L和2L,线圈一半在磁场内,一半在磁场外,磁感强度为B0。t=0时刻磁场开始均匀减小,线圈中产生感应电流,在磁场力作用下运动,v-t图象如图乙,图中斜向虚线为过0点速度图线的切线,数据由图中给出,不考虑重力影响。

⑴磁场磁感强度的变化率。
⑵t3时刻回路电功率。

⑴磁场磁感强度的变化率。
⑵t3时刻回路电功率。
20.
如图所示,在磁感应强度为B的水平方向的匀强磁场中竖直放置两平行导轨,磁场方向与导轨所在平面垂直。导轨上端跨接一阻值为R的电阻(导轨电阻不计)。两金属棒a和b的电阻均为R,质量分别为ma=2×10-2Kg和mb=1×10-2Kg,它们与导轨相连,并可沿导轨无摩擦滑动。闭合开关S,先固定b,用一恒力F向上拉a,稳定后a以v1=10m/s的速度匀速运动,此时再释放b,b恰好能保持静止,设导轨足够长,取g=10m/s2。

(1)求拉力F的大小;
(2)若将金属棒a固定,让金属棒b自由下滑(开关仍闭合),求b滑行的最大速度v2;
(3)若断开开关,将金属棒a和b都固定,使磁感应强度从B随时间均匀增加,经0.1s后磁感应强度增到2B时,a棒受到的安培力正好等于a棒的重力,求两金属棒间的距离h。

(1)求拉力F的大小;
(2)若将金属棒a固定,让金属棒b自由下滑(开关仍闭合),求b滑行的最大速度v2;
(3)若断开开关,将金属棒a和b都固定,使磁感应强度从B随时间均匀增加,经0.1s后磁感应强度增到2B时,a棒受到的安培力正好等于a棒的重力,求两金属棒间的距离h。
21.
如图所示,矩形裸导线框长边的长度为2l,短边的长度为l,在两个短边上均接有电阻R,其余部分电阻不计。导线框一长边与x轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的磁感应强度满足关系B=B0sin(
)。一光滑导体棒AB与短边平行且与长边接触良好,电阻也是R。开始时导体棒处于x=0处,从t=0时刻起,导体棒AB在沿x方向的力F作用下做速度为v的匀速运动,求:

(1)导体棒AB从x=0到x=2l的过程中力F随时间t变化的规律;
(2)导体棒AB从x=0到x=2l的过程中回路产生的热量。


(1)导体棒AB从x=0到x=2l的过程中力F随时间t变化的规律;
(2)导体棒AB从x=0到x=2l的过程中回路产生的热量。
22.
水平面上两根足够长的金属导轨平行固定放置,问距为L,一端通过导线与阻值为R的电阻连接;导轨上放一质量为m的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v也会变化,v与F的关系如右下图。(取重力加速度g=10m/s2)

(1)金属杆在匀速运动之前做什么运动?
(2)若m=0.5kg,L=0.5m,R=0.5Ω;磁感应强度B为多大?
(3)由v—F图线的截距可求得什么物理量?其值为多少?

(1)金属杆在匀速运动之前做什么运动?
(2)若m=0.5kg,L=0.5m,R=0.5Ω;磁感应强度B为多大?
(3)由v—F图线的截距可求得什么物理量?其值为多少?
23.
如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L=0.2m,一端通过导线与阻值为R=1Ω的电阻连接;导轨上放一质量为m=0.5kg的金属杆,金属杆与导轨的电阻均忽略不计,整个装置处于竖直向上的大小为B=0.5T的匀强磁场中。现用与导轨平行的拉力F作用在金属杆上,金属杆运动的v-t图象如图乙所示。(g=10m/s2)求:

(1)t=10s时拉力的大小及电路的发热功率;
(2)在0~10s内,通过电阻R的电量。

(1)t=10s时拉力的大小及电路的发热功率;
(2)在0~10s内,通过电阻R的电量。
5.实验题- (共1题)
试卷分析
-
【1】题量占比
单选题:(10道)
多选题:(3道)
填空题:(1道)
解答题:(9道)
实验题:(1道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:10
7星难题:0
8星难题:10
9星难题:1