1.单选题- (共6题)
4.
今年某区积极推进“互联网+享受教育”课堂生态重构,加强对学校教育信息化的建设的投入,计划从今年起三年共投入1440万元,已知2015年投入1000万元.设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是( )
A.1000(1+x)2=1440 |
B.1000(x2+1)=1440 |
C.1000+1000x+1000x2=1440 |
D.1000+1000(1+x)+1000(1+x)2=1440 |
6.
已知点A(﹣3,y1),B(﹣1,y2),C(2,y3)在函数y=﹣x2﹣2x+b的图象上,则y1、y2、y3的大小关系为( )
A.y1<y3<y2 | B.y3<y1<y2 | C.y3<y2<y1 | D.y2<y1<y3 |
2.填空题- (共3题)
3.解答题- (共5题)
11.
某小区在绿化工程中有一块长为20m、宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.

12.
已知抛物线y=x2﹣2mx+m2﹣1(m是常数)的顶点为P,直线l:y=x﹣1.
(1)求证:点P在直线l上.
(2)若抛物线的对称轴为x=﹣3,直接写出该抛物线的顶点坐标 ,与x轴交点坐标为 .
(3)在(2)条件下,抛物线上点(﹣2,b)在图象上的对称点的坐标是 .
(1)求证:点P在直线l上.
(2)若抛物线的对称轴为x=﹣3,直接写出该抛物线的顶点坐标 ,与x轴交点坐标为 .
(3)在(2)条件下,抛物线上点(﹣2,b)在图象上的对称点的坐标是 .
13.
如图,抛物线y=ax2+2ax+c的图象与x轴交于A、B两点(点A在点B的左边)AB=4,与y轴交于点C,OC=OA,点D为抛物线的顶点.

(1)求抛物线的解析式;
(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM,如图1,点P在点Q左边,当矩形PQNM的周长最大时,求m的值,并求出此时的△AEM的面积;
(3)已知H(0,﹣1),点G在抛物线上,连HG,直线HG⊥CF,垂足为F,若BF=BC,求点G的坐标.

(1)求抛物线的解析式;
(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM,如图1,点P在点Q左边,当矩形PQNM的周长最大时,求m的值,并求出此时的△AEM的面积;
(3)已知H(0,﹣1),点G在抛物线上,连HG,直线HG⊥CF,垂足为F,若BF=BC,求点G的坐标.
试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:8
7星难题:0
8星难题:2
9星难题:2