1.单选题- (共9题)
5.
在等边三角形ABC中,D ,E 分别是BC,AC 的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在( ).


A.A点处 | B.D点处 |
C.AD的中点处 | D.△ABC三条高线的交点处 |
2.填空题- (共8题)
3.解答题- (共6题)
18.
如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两
条直角边,OE平分∠AOD.
(1)若∠COE=20°,则∠BOD= ;若∠COE=α,则∠BOD= (用含α的代数式表示)
(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.

(1)若∠COE=20°,则∠BOD= ;若∠COE=α,则∠BOD= (用含α的代数式表示)
(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.

19.
如图25,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40º.

(1)求∠NMB的度数;
(2)如果将(1)中∠A的度数改为70º,其余条件不变,再求∠NMB的度数;
(3)你发现有什么样的规律性,试证明之;
(4)若将(1)中的∠A改为钝角,你对这个规律性的认识是否需要加以修改?

(1)求∠NMB的度数;
(2)如果将(1)中∠A的度数改为70º,其余条件不变,再求∠NMB的度数;
(3)你发现有什么样的规律性,试证明之;
(4)若将(1)中的∠A改为钝角,你对这个规律性的认识是否需要加以修改?
21.
如图,在△ABC中,AD是∠BAC的平分线,且∠B=∠ADB,过点C作CM垂直于AD的延长线,垂足为M.
(1)若∠DCM=α,试用α表示∠BAD;
(2)求证:AB+AC=2AM.
(1)若∠DCM=α,试用α表示∠BAD;
(2)求证:AB+AC=2AM.

22.
如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE⊥AD交AD于F,交AC于

A. (1)求证:△ABE为等腰三 ![]() (2)已知AC=11,AB=6,求BD长. |

23.
(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,分别交AB、AC于E、F两点,则图中共有__________个等腰三角形;EF与BE、CF之间的数量关系是__________,△AEF的周长是__________;
(2)如图2,若将(1)中“△ABC中,AB=AC=10”该为“若△ABC为不等边三角形,AB=8,AC=10”其余条件不变,则图中共有__________个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长;
(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明.

(2)如图2,若将(1)中“△ABC中,AB=AC=10”该为“若△ABC为不等边三角形,AB=8,AC=10”其余条件不变,则图中共有__________个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长;
(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明.


试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(8道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:16
7星难题:0
8星难题:0
9星难题:6