1.单选题- (共6题)
2.填空题- (共4题)
10.
两个反比例函数
和
在第一象限内的图象如图所示,点P在
的图象上,PC⊥x轴于点C,交
的图象于点A,PD⊥y轴于点D,交
的图象于点B,当点P在
的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是__ . 







3.解答题- (共5题)
12.
今年本市蜜桔大丰收,某水果商销售一种蜜桔,成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式;
(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?(销售利润=销售价﹣成本价)
(1)求y与x之间的函数关系式;
(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?(销售利润=销售价﹣成本价)

13.
已知反比例函数y=
的图象的一支位于第一象限,点A(x1,y1),B(x2,y2)都在该函数的图象上.
(1)m的取值范围是 ,函数图象的另一支位于第一象限,若x1>x2,y1>y2,则点B在第 象限;
(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点C与点A关于x轴对称,若△OAC的面积为6,求m的值.

(1)m的取值范围是 ,函数图象的另一支位于第一象限,若x1>x2,y1>y2,则点B在第 象限;
(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点C与点A关于x轴对称,若△OAC的面积为6,求m的值.

14.
如图,一次函数y1=﹣x+5的图象与反比例函数y2=
(k≠0)在第一象限的图象交于A(1,n)和B两点.
(1)求反比例函数的解析式;
(2)当y2>y1>0时,写出自变量x的取值范围.

(1)求反比例函数的解析式;
(2)当y2>y1>0时,写出自变量x的取值范围.

15.
我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
(1)概念理解:
如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
(2)问题探究:
如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求
的值.
(3)应用拓展:
如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的
倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.
(1)概念理解:
如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
(2)问题探究:
如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求

(3)应用拓展:
如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的


试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:11
7星难题:0
8星难题:3
9星难题:0