1.单选题- (共10题)
8.
为了鼓励居民节约用水,某市决定实行两级收费制度,水费y(元)与用水量x(吨)之间的函数关系如图所示.若每月用水量不超过20吨(含20吨),按政府优惠价收费;若每月用水量超过20吨,超过部分按市场价4元/吨收费,那么政府优惠价是( )


A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
2.填空题- (共5题)
12.
在平面直角坐标系
中,对于点
,我们把点
叫做点
的衍生点.已知点
的衍生点为
,点
的衍生点为
,点
的衍生点为
这样依次得到点
若点
的坐标为
,若点
在第四象限,则
范围分别为______________.















3.解答题- (共7题)
17.
某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:
(1)若y与x满足初中学过的某一函数关系,求函数的解析式;
(2)现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费,则乙复印社每月收费y(元)与复印页数x(页)的函数关系为________________,
(3)学校准备复印材料1000页,应选择哪个复印社比较优惠?
x(页) | 100 | 200 | 400 | 1000 | … |
y(元) | 40 | 80 | 160 | 400 | |
(1)若y与x满足初中学过的某一函数关系,求函数的解析式;
(2)现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费,则乙复印社每月收费y(元)与复印页数x(页)的函数关系为________________,
(3)学校准备复印材料1000页,应选择哪个复印社比较优惠?
19.
直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2),
(1)求直线AB的解析式;
(2)点C(x,y)是直线AB的一个动点,当点C运动过程中,试写出△BOC的面积S与x的函数关系式;
(3)当△BOC的面积为3时,求点C的坐标.
(1)求直线AB的解析式;
(2)点C(x,y)是直线AB的一个动点,当点C运动过程中,试写出△BOC的面积S与x的函数关系式;
(3)当△BOC的面积为3时,求点C的坐标.

20.
材料理解:如图1点P,Q是标准体育场400m跑道上两点,沿跑道从P到Q既可以逆时针,也可以顺时针,我们把沿跑道从点P到点Q的顺时针路程与逆时针路程的较小者叫P、Q两点的最佳环距离.(如图1,PQ顺时针的路程为120m,逆时针的路程为280m,则PQ的最佳环距离为120m).
问题提出:一次校运动800m预决赛中,如图2有甲、乙两名运动员他们同时同地从点M处出发,匀速跑步,他们之间的最佳环距离y(m)与乙用的时间x(s)之间的函数关系如图所示;解决以下问题:
(1)a=_________,乙的速度为___________.
(2)求线段BC的解析式,并写出自变量的范围.
(3)若本次运动会是1000m预决赛,甲完成比赛后是否有可能比乙多跑一圈,计算说明.

问题提出:一次校运动800m预决赛中,如图2有甲、乙两名运动员他们同时同地从点M处出发,匀速跑步,他们之间的最佳环距离y(m)与乙用的时间x(s)之间的函数关系如图所示;解决以下问题:
(1)a=_________,乙的速度为___________.
(2)求线段BC的解析式,并写出自变量的范围.
(3)若本次运动会是1000m预决赛,甲完成比赛后是否有可能比乙多跑一圈,计算说明.


试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:8
7星难题:0
8星难题:14
9星难题:0