1.单选题- (共10题)
4.
三种不同类型的纸板的长宽如图所示,其中A类和C类是正方形,B类是长方形,现A类有1块,B类有4块,C类有5块. 如果用这些纸板拼成一个正方形,发现多出其中1块纸板,那么拼成的正方形的边长是( )


A.m+n | B.2m+2n | C.2m+n | D.m+2n |
6.
下列说法中:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的周长相等;周长相等的两个三角形全等;全等三角形的面积相等;面积相等的两个三角形全等,正确说法有( )
A.2个 | B.3个 | C.4个 | D.5个 |
7.
如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点
A.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是( )![]() | ||
B.1 | C.2 | D.3 D.4 |
2.填空题- (共5题)
12.
已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号). 

3.解答题- (共7题)
21.
如图,等腰直角△ABC中,∠ACB=90°,点D在BA的延长线上,连接CD,过点C作CE⊥CD,使CE=CD,连接BE,若点N为BD的中点,连接CN、BE.
(1)求证:AB⊥BE.
(2)求证:AE=2CN.
(1)求证:AB⊥BE.
(2)求证:AE=2CN.

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:5
5星难题:0
6星难题:1
7星难题:0
8星难题:6
9星难题:10