1.单选题- (共9题)
2.
下列说法:(1)两点之间的距离是两点间的线段;(2)如果两条线段没有交点,那么这两条线段所在直线也没有交点;(3)邻补角的两条角平分线构成一个直角;(4)同一平面内,过一点有且只有一条直线与已知直线垂直;(5)同一平面内,过一点有且只有一条直线与已知直线平行.其中正确的是( )
A.1个 | B.2个 | C.3个 | D.4个 |
7.
如图,AB∥CD,则∠A、∠C、∠E、∠F满足的数量关系是( )


A.∠A=∠C+∠E+∠F | B.∠A+∠E﹣∠C﹣∠F=180° |
C.∠A﹣∠E+∠C+∠F=90° | D.∠A+∠E+∠C+∠F=360° |
2.填空题- (共6题)
3.解答题- (共6题)
16.
将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCE=45°,则∠ACB的度数为_____.
②若∠ACB=140°,则∠DCE的度数为_____.
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;
(3)当∠ACE<90°且点E在直线AC的上方时,当这两块角尺有一组边互相平行时,请写出∠ACE角度所有可能的值.并说明理由.
(1)①若∠DCE=45°,则∠ACB的度数为_____.
②若∠ACB=140°,则∠DCE的度数为_____.
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;
(3)当∠ACE<90°且点E在直线AC的上方时,当这两块角尺有一组边互相平行时,请写出∠ACE角度所有可能的值.并说明理由.

18.
探究:
如图①,在△ABC中,点D、E、F分别在边AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式):

解:∵DE∥BC( )
∴∠DEF= ( )
∵EF∥AB
∴ =∠ABC( )
∴∠DEF=∠ABC( )
∵∠ABC=65°
∴∠DEF=
应用:
如图②,在△ABC中,点D、E、F分别在边AB、AC、BC的延长线上,且DE∥BC,EF∥AB,若∠ABC=β,则∠DEF的大小为 (用含β的代数式表示).
如图①,在△ABC中,点D、E、F分别在边AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式):

解:∵DE∥BC( )
∴∠DEF= ( )
∵EF∥AB
∴ =∠ABC( )
∴∠DEF=∠ABC( )
∵∠ABC=65°
∴∠DEF=
应用:
如图②,在△ABC中,点D、E、F分别在边AB、AC、BC的延长线上,且DE∥BC,EF∥AB,若∠ABC=β,则∠DEF的大小为 (用含β的代数式表示).
19.
已知:如图,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.
阅读下面的解答过程,并填空(理由或数学式)
解:∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性质)
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°
阅读下面的解答过程,并填空(理由或数学式)
解:∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性质)
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(6道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:14
7星难题:0
8星难题:5
9星难题:2