1.单选题- (共4题)
1.
二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①a<0,②b>0,③b2﹣4ac>0,④a+b+c<0,其中结论正确的个数有( )


A.1个 | B.2个 | C.3个 | D.4个 |
2.
已知函数y=﹣(x﹣m)(x﹣n)+3,并且a,b是方程(x﹣m)(x﹣n)=3的两个根,则实数m,n,a,b的大小关系可能是( )
A.m<a<b<n | B.m<a<n<b | C.a<m<b<n | D.a<m<n<b |
3.
把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A.y=﹣2(x+1)2+1 | B.y=﹣2(x﹣1)2+1 |
C.y=﹣2(x﹣1)2﹣1 | D.y=﹣2(x+1)2﹣1 |
2.填空题- (共1题)
3.解答题- (共5题)
7.
阅读材料,并回答问题:
小明在学习分式运算过程中,计算
的解答过程如下:
解:
①
=
②
=(x﹣2)﹣(x+2)③
=x﹣2﹣x﹣2 ④
=﹣4 ⑤
问题:(1)上述计算过程中,从 步开始出现了错误(填序号);
(2)发生错误的原因是: ;
(3)在下面的空白处,写出正确的解答过程:
小明在学习分式运算过程中,计算

解:

=

=(x﹣2)﹣(x+2)③
=x﹣2﹣x﹣2 ④
=﹣4 ⑤
问题:(1)上述计算过程中,从 步开始出现了错误(填序号);
(2)发生错误的原因是: ;
(3)在下面的空白处,写出正确的解答过程:
8.
已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
9.
对于一个三角形,设其三个内角的度数分别为x°、y°和z°,若x、y、z满足x2+y2=z2,我们定义这个三角形为美好三角形.
(1)△ABC中,若∠A=40°,∠B=80°,则△ABC (填“是”或“不是”)美好三角形;
(2)如图,锐角△ABC是⊙O的内接三角形,∠C=60°,AC=2,⊙O的直径是2
,求证:△ABC是美好三角形;
(3)已知△ABC是美好三角形,∠A=30°,求∠C的度数.
(1)△ABC中,若∠A=40°,∠B=80°,则△ABC (填“是”或“不是”)美好三角形;
(2)如图,锐角△ABC是⊙O的内接三角形,∠C=60°,AC=2,⊙O的直径是2

(3)已知△ABC是美好三角形,∠A=30°,求∠C的度数.

试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(1道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:7
7星难题:0
8星难题:1
9星难题:1