1.单选题- (共7题)
3.
晓明家到学校的路程是3 500米,晓明每天早上7∶30离家步行去上学,在8∶10(含8∶10)至8∶20(含8∶20)之间到达学校。如果设晓明步行的速度为x米/分,则晓明步行的速度范围是( )
A.70≤x≤87.5 | B.x≤70或x≥87.5 | C.x≤70 | D.. x≥87.5 |
5.
当m,n是实数且满足m﹣n=mn时,就称点Q(m,
)为“奇异点”,已知点A、点B是“奇异点”且都在反比例函数y=
的图象上,点O是平面直角坐标系原点,则△OAB的面积为( )
A. 1 B.
C. 2 D. 


A. 1 B.


7.
下列调查方式中适合的是( )
A.要了解一批节能灯的使用寿命,采用普查方式 |
B.调查你所在班级同学的身高,采用抽样调查方式 |
C.环保部门调查长江某段水域的水质情况,采用抽样调查方式 |
D.调查全市中学生每天的就寝时间,采用普查方式 |
2.选择题- (共6题)
3.填空题- (共4题)
15.
如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C(2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y=
的图象上,则k的值为_____.


4.解答题- (共5题)
20.
如图,已知二次函数y=ax2-2ax+c(a<0)的图象与x轴负半轴交于点A(-1,0),与y轴正半轴交与点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.

(1)求一次函数解析式;
(2)求顶点P的坐标;
(3)平移直线AB使其过点P,如果点M在平移后的直线上,且
,求点M坐标;
(4)设抛物线的对称轴交x轴与点E,联结AP交y轴与点D,若点Q、N分别为两线段PE、PD上的动点,联结QD、QN,请直接写出QD+QN的最小值.

(1)求一次函数解析式;
(2)求顶点P的坐标;
(3)平移直线AB使其过点P,如果点M在平移后的直线上,且

(4)设抛物线的对称轴交x轴与点E,联结AP交y轴与点D,若点Q、N分别为两线段PE、PD上的动点,联结QD、QN,请直接写出QD+QN的最小值.
21.
在正方形网格中,A、B为格点,以点
为圆心,
为半径作圆
交网格线于点
(如图(1)),过点
作圆的切线交网格线于点
,以点
为圆心,
为半径作圆交网格线于点
(如图(2)).

问题:
(1) 求
的度数;
(2) 求证:
;
(3)
可以看作是由
经过怎样的变换得到的?并判断
的形状(不用说明理由).
(4) 如图(3),已知直线
,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形
,使三个顶点
,分别在直线
上.要求写出简要的画图过程,不需要说明理由.










问题:
(1) 求

(2) 求证:

(3)



(4) 如图(3),已知直线





22.
中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
请根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)请补全频数分布直方图;
(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
请根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)请补全频数分布直方图;
(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?

试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(6道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:3
7星难题:0
8星难题:2
9星难题:9