1.单选题- (共7题)
5.
边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()


A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共3题)
3.解答题- (共3题)
11.
如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结 DF 交射线 AC 于点 G

(1)当 DF⊥AB 时,求 t 的值;
(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。
(3)聪明的斯扬同学通过测量发现,当点 D 在线段 AB 上时,EG 的长始终等于 AC 的一半,他想当点D 运动到图 2 的情况时,EG 的长是否发生变化?若改变,说明理由;若不变,求出 EG 的长。

(1)当 DF⊥AB 时,求 t 的值;
(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。
(3)聪明的斯扬同学通过测量发现,当点 D 在线段 AB 上时,EG 的长始终等于 AC 的一半,他想当点D 运动到图 2 的情况时,EG 的长是否发生变化?若改变,说明理由;若不变,求出 EG 的长。
12.
如图,△DAC 和△EBC 均是等边三角形,A,C,B 三点在一条直线上,AE,BD 分别与 CD、CE 交于点 M、N,AE,BD 相交于点 O.

(1)求证:△ACE ≌△DCB;
(2)求∠AOD 的度数
(3)判断△CMN 的形状并说明理由。

(1)求证:△ACE ≌△DCB;
(2)求∠AOD 的度数
(3)判断△CMN 的形状并说明理由。
试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(3道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:4
7星难题:0
8星难题:2
9星难题:5