1.单选题- (共3题)
1.
某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线
的一部分,则当x=16时,大棚内的温度约为( ).



A.18℃ | B.15.5℃ | C.13.5℃ | D.12℃ |
2.填空题- (共2题)
3.解答题- (共4题)
7.
在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:
若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形
,
,
都是点A,B,C的外延矩形,矩形
是点A,B,C的最佳外延矩形.

(1)如图1,已知A(-2,0),B(4,3),C(0,
).
①若
,则点A,B,C的最佳外延矩形的面积为 ;
②若点A,B,C的最佳外延矩形的面积为24,则
的值为 ;
(2)如图2,已知点M(6,0),N(0,8).P(
,
)是抛物线
上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标
的取值范围;
(3)如图3,已知点D(1,1).E(
,
)是函数
的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.
若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形





(1)如图1,已知A(-2,0),B(4,3),C(0,

①若

②若点A,B,C的最佳外延矩形的面积为24,则

(2)如图2,已知点M(6,0),N(0,8).P(




(3)如图3,已知点D(1,1).E(




9.
阅读下面材料:
小辉遇到这样一个问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.

小辉发现,将△ABD绕点A按逆时针方向旋转90º,得到△ACF,连接EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△FAE≌△DAE,得FE=D
小辉遇到这样一个问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.

小辉发现,将△ABD绕点A按逆时针方向旋转90º,得到△ACF,连接EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△FAE≌△DAE,得FE=D
A.解△FCE,可求得FE(即DE)的长. 请回答:在图2中,∠FCE的度数是 ,DE的长为 . 参考小辉思考问题的方法,解决问题: 如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,且∠EAF= ![]() | B.猜想线段BE,EF,FD之间的数量关系并说明理由. |
试卷分析
-
【1】题量占比
单选题:(3道)
填空题:(2道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:2
7星难题:0
8星难题:3
9星难题:2