1.选择题- (共2题)
2.单选题- (共5题)
3.
象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种。由于用具简单,趣味性强,成为流行极为广泛的棋艺活动。如图是一方的棋盘,如果“马”的坐标是(-2,2),它是抛物线y=ax2(a≠0)上的一个点,那么下面哪个棋子也在该抛物线上( )


A.帥 | B.卒 | C.炮 | D.仕 |
5.
如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )
A.1,2,3 | B.1,1,![]() | C.1,1,![]() | D.1,2,![]() |
3.填空题- (共4题)
8.
定义:在平面内,我们把既有大小又有方向的量叫做平面向量。平面向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向其中大小相等,方向相同的向量叫做相等向量。

如以正方形ABCD的四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同的向量:
、
、
、
、
、
、
、
(由于
和
是相等向量,因此只算一个)。如图作两个相邻的正方形。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2),则f(2)的值为__________。

如以正方形ABCD的四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同的向量:










4.解答题- (共7题)
13.
列方程解应用题:

老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂。”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少。
小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树。他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约_______千米。
然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米。小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:

考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值。

老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂。”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少。
小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树。他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约_______千米。
然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米。小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:

考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值。
15.
有这样一个问题:探究函数y=
的图象与性质。小慧根据学习函数的经验,对函数y=
的图象与性质进行了探究。下面是小慧的探究过程,请补充完成:
(1)函数y=
的自变量x的取值范围是__________;
(2)列出y与x的几组对应值。请直接写出m的值,m=________;
(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,写出该函数的两条性质:

①_____________________________________________;
②_____________________________________________。


(1)函数y=

(2)列出y与x的几组对应值。请直接写出m的值,m=________;
x | … | -3 | -2 | 0 | 1 | 1.5 | 2.5 | m | 4 | 6 | 7 | … |
y | … | 2.4 | 2.5 | 3 | 4 | 6 | -2 | 0 | 1 | 1.5 | 1.6 | … |
(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,写出该函数的两条性质:

①_____________________________________________;
②_____________________________________________。
16.
如图,在平面直角坐标系xOy中,O是坐标原点。直线y=-x+b经过点A(2,1),AB⊥x轴于B,连结AO。

(1)求b的值;
(2)M是直线y=-x+b上异于A的动点,且在第一象限内。过M作x轴的垂线,垂足为N。若△MON的面积与△AOB的面积相等,求点M的坐标。

(1)求b的值;
(2)M是直线y=-x+b上异于A的动点,且在第一象限内。过M作x轴的垂线,垂足为N。若△MON的面积与△AOB的面积相等,求点M的坐标。
17.
已知:抛物线y=x2+bx+c经过点(2,﹣3)和(4,5).
(1)求抛物线的表达式及顶点坐标;
(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;
(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.
(1)求抛物线的表达式及顶点坐标;
(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;
(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.

试卷分析
-
【1】题量占比
选择题:(2道)
单选题:(5道)
填空题:(4道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:9
7星难题:0
8星难题:3
9星难题:3