1.单选题- (共8题)
2.填空题- (共5题)
3.解答题- (共7题)
14.
阅读下列材料:
解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:
解:∵x﹣y=2,又∵x>1,∴y+2>1,即y>﹣1
又y<0,∴﹣1<y<0.…①
同理得:1<x<2.…②
由①+②得﹣1+1<y+x<0+2,∴x+y的取值范围是0<x+y<2.
请按照上述方法,完成下列问题:
已知关于x、y的方程组
的解都为非负数.
(1)求a的取值范围;
(2)已知2a﹣b=1,且,求a+b的取值范围;
(3)已知a﹣b=m(m是大于1的常数),且b≤1,求2a+b最大值.(用含m的代数式表示)
解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:
解:∵x﹣y=2,又∵x>1,∴y+2>1,即y>﹣1
又y<0,∴﹣1<y<0.…①
同理得:1<x<2.…②
由①+②得﹣1+1<y+x<0+2,∴x+y的取值范围是0<x+y<2.
请按照上述方法,完成下列问题:
已知关于x、y的方程组

(1)求a的取值范围;
(2)已知2a﹣b=1,且,求a+b的取值范围;
(3)已知a﹣b=m(m是大于1的常数),且b≤1,求2a+b最大值.(用含m的代数式表示)
16.
杭州市成功申办2022年亚运会,这将推动杭州市体育事业发展,为了促进全民健身活动的发展,某社区为辖区内学校购买一批篮球和足球,已知篮球和足球的单价分别为120元和90元.
(1)根据实际需要,社区决定购买篮球和足球共100个,其中篮球购买的数量不少于40个,社区可用于购买这批篮球和足球的资金最多为10260元,请问有几种购买方案;
(2)若购买篮球
个,学校购买这批篮球和足球的总费用为
元,在(1)的条件下,求哪种方案能使
最小,并求出
的最小值.
(1)根据实际需要,社区决定购买篮球和足球共100个,其中篮球购买的数量不少于40个,社区可用于购买这批篮球和足球的资金最多为10260元,请问有几种购买方案;
(2)若购买篮球




17.
如图,已知A(-3,-3),B(-2,-1),C(-1.-2)是坐标平面上三点.
(1)写出点C关于y轴的对称点C’的坐标;
(2)画出将△ABC先向上平移5个单位,再向右平移3个单位后所对应的△A1B1C1.并写出△A1B1C1的各顶点坐标;
(3)将点C’向上平移
个单位后,点C’恰好落在△A1B1C1内,请你写出符合条件的一个整数
.(直接写出答案)
(1)写出点C关于y轴的对称点C’的坐标;
(2)画出将△ABC先向上平移5个单位,再向右平移3个单位后所对应的△A1B1C1.并写出△A1B1C1的各顶点坐标;
(3)将点C’向上平移



18.
如图1,在△OMN中,∠MON=90°,OM=6cm,∠OMN=30°.等边△ABC的顶点B与点O重合,BC在OM上,点A恰好在MN上.
(1)求等边△ABC的边长;
(2)如图2,将等边△ABC沿OM方向以1cm/s的速度平移,边AB、AC分别与MN交于点E、F,在△ABC平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s)
①用含t的代数式表示AE的长,并写出t的取值范围;
②在点P沿折线B→A→C运动的过程中,是否在某一时刻,点P、E、F组成的三角形为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.
(1)求等边△ABC的边长;
(2)如图2,将等边△ABC沿OM方向以1cm/s的速度平移,边AB、AC分别与MN交于点E、F,在△ABC平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s)
①用含t的代数式表示AE的长,并写出t的取值范围;
②在点P沿折线B→A→C运动的过程中,是否在某一时刻,点P、E、F组成的三角形为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.

19.
如图,在Rt△ABC中,∠ACB=90°.
(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);
(2)连接AP,若AC=4,BC=8时,试求点P到AB边的距离.
(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);
(2)连接AP,若AC=4,BC=8时,试求点P到AB边的距离.

试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:14
7星难题:0
8星难题:5
9星难题:0