1.单选题- (共10题)
2.
如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC.其中正确的结论有( )

A. 1个 B. 2个 C. 3个 D. 4个

A. 1个 B. 2个 C. 3个 D. 4个
4.
在如图的方格纸中,每个小方格都是边长为1的正方形,点A、B是方格中的两个格点(即网格中横、纵线的交点),在这个5×5的方格纸中,格点C使△ABC的面积为2个平方单位,则图中这样的点C有( )个.

A. 3 B. 4 C. 5 D. 6

A. 3 B. 4 C. 5 D. 6
9.
如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )


A.∠A=∠1+∠2 | B.2∠A=∠1+∠2 |
C.3∠A=2∠1+∠2 | D.3∠A=2(∠1+∠2) |
2.填空题- (共3题)
11.
如图,在△ABC中,∠A=64°,∠ABC与∠ACD的平分线交于点A1,则∠A1= ______ ;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠An-1BC与∠An-1CD的平分线相交于点An,要使∠An的度数为整数,则n的值最大为______ .

3.解答题- (共8题)
14.
如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.
(1)若∠F=80º,则∠ABC+∠BCD= ;∠E= ;
(2)探索∠E与∠F有怎样的数量关系,并说明理由;
(3)给四边形ABCD添加一个条件,使得∠E=∠F所添加的条件为 .
(1)若∠F=80º,则∠ABC+∠BCD= ;∠E= ;
(2)探索∠E与∠F有怎样的数量关系,并说明理由;
(3)给四边形ABCD添加一个条件,使得∠E=∠F所添加的条件为 .

18.
如图,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连结DE.
(1)当∠BAD=60°,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试写出∠BAD与∠CDE的数量关系,并说明理由.
(1)当∠BAD=60°,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试写出∠BAD与∠CDE的数量关系,并说明理由.

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(3道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:18
7星难题:0
8星难题:0
9星难题:3