1.单选题- (共10题)
3.
“五一”节即将来临,某旅游景点超市用700元购进甲、乙两种商品260个,其中甲种商品比乙种商品少用100元,已知甲种商品单价比乙种商品单价高20%.那么乙种商品单价是( )
A.2元 | B.2.5元 | C.3元 | D.5元 |
4.
二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:

下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b
)x+c=0的一个根;(4)当
<x<3时,ax2+(b
)x+c>0.其中正确的个数为( )

下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b



A.4个 | B.3个 | C.2个 | D.1个 |
5.
如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=
,反比例函数y=
在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )




A.30 | B.40 | C.60 | D.80 |
8.
某健步走运动爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是( )


A.1.2,1.3 | B.1.3,1.3 |
C.1.4,1.35 | D.1.4,1.3 |
2.选择题- (共3题)
11.
若方程mx+ny=6的两个解是{#mathml#}{#/mathml#},{#mathml#}{#/mathml#},则m={#blank#}1{#/blank#},n={#blank#}2{#/blank#}
12.已知α,β,γ是两两不重合的三个平面,下列命题中真命题的个数为( )
①若α∥β,β∥γ,则α∥γ;
②若α∥β,α∩γ=a,β∩γ=b,则a∥b;
③若α∥β,β⊥γ,则α⊥γ;
④若α⊥β,β⊥γ,则α⊥γ
13.已知α,β,γ是两两不重合的三个平面,下列命题中真命题的个数为( )
①若α∥β,β∥γ,则α∥γ;
②若α∥β,α∩γ=a,β∩γ=b,则a∥b;
③若α∥β,β⊥γ,则α⊥γ;
④若α⊥β,β⊥γ,则α⊥γ
3.解答题- (共4题)
15.
为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.

16.
正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F.如图1,当点P与点O重合时,显然有DF=CF.
(1)如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD于点E.求证:DF=EF;
(2)若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E.请完成图3并判断(1)中的结论是否成立?请说明理由.
(1)如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD于点E.求证:DF=EF;
(2)若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E.请完成图3并判断(1)中的结论是否成立?请说明理由.

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(3道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:5
7星难题:0
8星难题:2
9星难题:6