1.单选题- (共6题)
2.填空题- (共4题)
3.解答题- (共7题)
14.
古代丝绸之路上的花剌子模地区曾经诞生过一位伟大的数学家-“代数学之父”阿尔·花拉子米.在研究一元二次方程解法的过程中,他觉得“有必要用几何学方式来证明曾用数字解释过的问题的正确性”.

以
为例,花拉子米的几何解法如下:
如图,在边长为
的正方形的两个相邻边上作边长分别为
和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形.

通过不同的方式来表达大正方形的面积,可以将原方程化为
)2=39+ ,从而得到此方程的正根是 .

以

如图,在边长为



通过不同的方式来表达大正方形的面积,可以将原方程化为

15.
如图,在平面直角坐标系
中,点
的坐标为(1,0),点
的横坐标为2,将点
绕点P旋转,使它的对应点
恰好落在
轴上(不与
点重合);再将点
绕点O逆时针旋转90°得到点
.
(1)直接写出点
和点C的坐标;
(2)求经过A,B,C三点的抛物线的表达式.









(1)直接写出点

(2)求经过A,B,C三点的抛物线的表达式.

16.
如图,ABCD是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在AD的延长线上,DG=2BE,设BE的长为x米,改造后苗圃AEFG的面积为y平方米.
(1)y与x之间的函数关系式为 (不需写自变量的取值范围);
(2)根据改造方案,改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,请问此时BE的长为多少米?
(1)y与x之间的函数关系式为 (不需写自变量的取值范围);
(2)根据改造方案,改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,请问此时BE的长为多少米?

试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(4道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:13
7星难题:0
8星难题:1
9星难题:3