1.单选题- (共5题)
1.
2017年12月某种流感病毒肆虐,该种病毒的直径在0. 00000012米左右,该数用科学记数法表示应为( )
A.0.12×10-6 | B.12×10-8 | C.1.2×10-6 | D.1.2×10-7 |
4.
如图, 小明同学在学习了全等三角形的相关知识后发现, 只用两把完全相同的长方形直尺就可以作出一个角的平分线. 如图: 一把直尺压住射线OB, 另一把直尺压住射线OA并且与第一把直尺交于点P, 小明说: “射线OP就是∠BOA的角平分线”. 他这样做的依据是( ) .


A.角平分线上的点到这个角两边的距离相等 |
B.角的内部到角的两边的距离相等的点在角的平分线上 |
C.三角形三条角平分线的交点到三条边的距离相等 |
D.以上均不正确 |
2.选择题- (共1题)
3.填空题- (共8题)
14.
汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数. “燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少. 下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.

根据图中提供的信息,下列说法:
①以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
②以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少
③以高于80km/h的速度行驶时,行驶相同路程,乙车比丙车省油
④以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升
正确的是________(填写正确结论的序号).

根据图中提供的信息,下列说法:
①以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
②以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少
③以高于80km/h的速度行驶时,行驶相同路程,乙车比丙车省油
④以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升
正确的是________(填写正确结论的序号).
4.解答题- (共12题)
18.
因雾霾天引发的汽车尾气污染备受关注,由此汽车限号行驶也成为人们关注的焦点,限行期间为方便市民出行,某路公交车每天比原来的运行增加15车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?
19.
画出函数
的图象.
(1)函数
的自变量x的取值范围是________;
(2)列表(把表格补充完整)
(3)描点、连线

(4)结合图象,写出函数的一条性质________________________________________.

(1)函数

(2)列表(把表格补充完整)
x | …… | -2 | -1 | 0 | 1 | 2 | 3 | 4 | …… |
y | | | | | | | | | |
(3)描点、连线

(4)结合图象,写出函数的一条性质________________________________________.
20.
已知一次函数y=-x+4的图象与x轴、y轴的交点分别为A、B,点P在直线y=2x上.
(1)若点P是一次函数y=-x+4的图象与直线y=2x的交点,求△OBP的面积;
(2)若点P的坐标为(3,6),求△ABP的面积;
(3)若△ABP的面积为12时,求点P的坐标.
(1)若点P是一次函数y=-x+4的图象与直线y=2x的交点,求△OBP的面积;
(2)若点P的坐标为(3,6),求△ABP的面积;
(3)若△ABP的面积为12时,求点P的坐标.

21.
已知A(2,0),B(2,4),定义:若平面内点P关于直线AB的对称点Q在图形M内或图形的边界上,则称点P是图形M关于直线AB的“反称点”.
(1)已知C(5,0),D(5,3)
①点M1(0,3),M2(-0. 5,2),M3(-2,1),则是△ACD关于直线AB的“反称点”的是________:
②若直线y=2x+m上存在△ACD关于直线AB的“反称点”,求m的取值范围;
(2)已知点E(1,0),F(5,0),
,点P(x,y)在直线y=x+1上,且点P是△EFG的反称点,求点P横坐标的取值范围. 
(1)已知C(5,0),D(5,3)
①点M1(0,3),M2(-0. 5,2),M3(-2,1),则是△ACD关于直线AB的“反称点”的是________:
②若直线y=2x+m上存在△ACD关于直线AB的“反称点”,求m的取值范围;
(2)已知点E(1,0),F(5,0),


23.
某地区要在区域S内(即∠COD内部)建一个超市M,如图,按照要求,超市M到两个新建的居民小区A、B的距离相等,到两条公路OC,OD的距离也相等. 这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)

24.
已知:∠MON=α,点P是∠MON角平分线上一点,点A在射线OM上,作∠APB=180°-α,交直线ON于点B,PC⊥ON于C.
(1)如图1,若∠MON=90°时,求证:PA=PB;
(2)如图2,若∠MON=60°时,写出线段OB,OA及BC之间的数量关系,并说明理由;
(3)如图3,若∠MON=60°时,点B在射线ON的反向延长线上时,(2)中结论还成立吗?若不成立,直接写出线段OB,OA及BC之间的数量关系(不需要证明).
(1)如图1,若∠MON=90°时,求证:PA=PB;
(2)如图2,若∠MON=60°时,写出线段OB,OA及BC之间的数量关系,并说明理由;
(3)如图3,若∠MON=60°时,点B在射线ON的反向延长线上时,(2)中结论还成立吗?若不成立,直接写出线段OB,OA及BC之间的数量关系(不需要证明).

试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(1道)
填空题:(8道)
解答题:(12道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:15
7星难题:0
8星难题:5
9星难题:4