1.单选题- (共6题)
5.
如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac,②abc<0;③a>c;④4a﹣2b+c<0,其中正确的个数有( )


A.1个 | B.2个 | C.3个 | D.4个 |
2.填空题- (共2题)
3.解答题- (共6题)
10.
列方程解应用题:
某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产
的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,设这种玩具的销售单价为x元.
(1)根据销售单价每降低1元,每天可多售出2个,则现在销售数量为_____个(用含有x的代数式表示)
(2)当x为多少元时,厂家每天可获利润20000元?
某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产

(1)根据销售单价每降低1元,每天可多售出2个,则现在销售数量为_____个(用含有x的代数式表示)
(2)当x为多少元时,厂家每天可获利润20000元?
13.
如图1,抛物线y=﹣
x2+bx+c(a≠0)与x轴交于A(﹣4,0)、B(1,0)两点,与y轴交于C点,对称轴x=﹣
,点N(n,0)是线段AB上的一个动点(N与A、B两点不重合),请回答下列问题:
(1)求出抛物线的解析式,并写出C点的坐标;
(2)试求出当n为何值时,△ANC恰能构成是等腰三角形.
(3)如图2,过N作NF∥BC,与AC相交于D点,连结CN,请问在N点的运动过程中,△CDN的面积是否存在最大值;若存在,试求出该最大面积,若不存在,请说明理由.


(1)求出抛物线的解析式,并写出C点的坐标;
(2)试求出当n为何值时,△ANC恰能构成是等腰三角形.
(3)如图2,过N作NF∥BC,与AC相交于D点,连结CN,请问在N点的运动过程中,△CDN的面积是否存在最大值;若存在,试求出该最大面积,若不存在,请说明理由.

试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(2道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:8
7星难题:0
8星难题:3
9星难题:1