2017—2018学年度第一学期海南省海口市四中八年级数学科期末检测模拟题

适用年级:初二
试卷号:199251

试卷类型:期末
试卷考试时间:2018/11/15

1.单选题(共13题)

1.
下列说法中,正确的是(  )
A.=±3B.-64的立方根是 -4
C.-5的算术平方根是D.0.01的平方根是0.1
2.
下列实数中,属于无理数的是(  )
A.B.0C.D.0.3131131113
3.
16的平方根是(  )
A.-4B.4C.±4D.±8
4.
下列计算,正确的是( )
A.a2·a3=a6B.3a2-a2=2C.a8÷a2=a4D.(-2a)3=-8a3
5.
下列四个算式,计算结果为x2-x-12的是(  )
A.(x+3)(x-4)B.(x-3)(x+4)
C.(x-3)(x-4)D.(x+3)(x+4)
6.
已知x2+kx+9可以用完全平方公式进行因式分解,则k的值为(  )
A.-6B.3C.6D.±6
7.
若n为大于0的整数,则(2n+1)2-(2n-1)2一定是(  )
A.6的倍数B.8的倍数C.12的倍数D.16的倍数
8.
如图,AB∥DE,AC∥DF,AC=DF,要使△ABC≌△DEF需再补充一个条件,下列条件中,不能选择的是(  )
A.AB=DEB.BC=EFC.EF∥BCD.∠B=∠E
9.
如图,在△ABC中,AB=AC,DE是AC的垂直平分线,△BCD的周长为24,BC=10,则AC等于(  )
A.11B.12C.14D.16
10.
如图,在△ABC中,点D在BC上,若AD=BD=DC,则∠BAC等于(   )
A.60°B.80°C.90°D.100°
11.
计算(2xy)3÷2xy2的结果是(  )
A.2yB.3x2yC.4xyD.4x2y
12.
我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),若大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,则(a+b)2的值为(   )
A.49B.25C.24D.13
13.
如图,在△ABC中,AB=AC=2,∠B=60°,AD平分∠BAC,则AD等于(  )
A.1B.C.D.1.5

2.填空题(共4题)

14.
若(m-3)2=4,则m2-6m=__________.
15.
比较大小:.
16.
如图,在△ABC中,∠C=90°,AB=10,BC=8,AD是∠BAC的平分线,DEAB于点E,则△BED的周长为_____.
17.
如图,在△ABC中,AB=AC,点D、E分别在边BC、AC上(均不与点A、B、C重合),且∠1=∠C=40°,若BD=CE,则∠BAD=_______度.

3.解答题(共6题)

18.
计算
(1)(3x-2y)2-2x(3x-2y);
(2)(2a+1)(4a2-2a+1);
(3)先化简,再求值:
(-x-2y)(x-2y)-(2y-x)2+(2x3-4x2y)÷2x,其中x=-3,.
19.
把下列多项式分解因式
(1)12xy2-3x3
(2)(x-2)(x-4)+1.
20.
如图,AM∥BN,BC是∠ABN的平分线.
(1)过点A作AD⊥BC,垂足为O,AD与BN交于点D. (要求:用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)
(2)求证:AC=BD.
21.
如图1,在△ABC中,∠ACB=90°,AC=BCCDAB边上的中线,点EF分别在ACBC边上,且EDDF.
(1)求证:△CDE≌△BDF
(2)如图2,作EGABGFHABH,求证:EG+FH=CD
22.
某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的统计图表(表1,图8.1,图8.2).

根据以上信息完成下列问题:
(1)统计表中的m= ,n=
(2)补全条形统计图;
(3)扇形统计图中“E”类所对应的圆心角是 度.
23.
如图,在6×8的正方形网格中,每个小正方形的边长都为1,△ABC的顶点在格点上.
(1)在△ABC中,AB的长为 ,AC的长为   
(2)在网格中,直接画出所有与△ABC全等的△DBC.
试卷分析
  • 【1】题量占比

    单选题:(13道)

    填空题:(4道)

    解答题:(6道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:15

    7星难题:0

    8星难题:1

    9星难题:7