北京市海淀区2018-2019学年八年级上学期期末考试数学试题

适用年级:初二
试卷号:198717

试卷类型:期末
试卷考试时间:2019/1/28

1.单选题(共9题)

1.
在下列运算中,正确的是(  )
A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6
C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y2
2.
下列各图是由若干个正方形和长方形组成的,其中能表示等式(a+b)2=a2+2ab+b2的是   (   )
A.B.
C.D.
3.
下列等式中,从左到右的变形是因式分解的是(   )
A.B.
C.D.
4.
有意义,则x的取值范围是(  )
A.x>3B.x<3C.x≠﹣3D.x≠3
5.
若分式的值为0,则x=(   )
A.0B.C.2D.7
6.
把分式的分子与分母各项系数化为整数,得到的正确结果是(   )
A.B.C.D.
7.
学完分式运算后,老师出了一道题“计算:”.
小明的做法:原式
小亮的做法:原式
小芳的做法:原式
其中正确的是(    )
A.小明B.小亮C.小芳D.没有正确的
8.
化为最简二次根式,得   (   )
A.B.C.D.
9.
如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为(  )
A.78 cm2B. cm2
C.12 cm2D.24 cm2

2.填空题(共7题)

10.
我们用[m]表示不大于m的最大整数,如:[2]=2,[4.1]=4,[3.99]=3.(1)=_____;(2)若[3+,则x的取值范围是_____.
11.
若x2+2x=1,则2x2+4x+3的值是_____.
12.
若4x2+mx+16是完全平方式,则m的值等于___________.
13.
请在“_____”的位置处填入一个整式,使得多项式x2+_____能因式分解,你填入的整式为_____.
14.
化简:=_____.
15.
人体内某种细胞可近似地看作球体,它的直径为0.000 000 156m,将0.000 000 156用科学记数法表示为  
16.
如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,且DA=D
A.若CD=3,则BC=_____.

3.解答题(共10题)

17.
计算:
(1)﹣(1+(π﹣3)0
(2)(x+2y)2﹣2x(3x+2y)+(x+y)(x﹣y).
18.
化简求值:,其中a=2.
19.
老师在黑板上书写了一个代数式的正确计算结果,随后用手遮住了原代数式的一部分,如图:
)÷ 
(1)求被手遮住部分的代数式,并将其化简;
(2)原代数式的值能等于﹣1吗?请说明理由.
20.
已知△ABC三条边的长度分别是,记△ABC的周长为CABC
(1)当x=2时,△ABC的最长边的长度是    (请直接写出答案);
(2)请求出CABC(用含x的代数式表示,结果要求化简);
(3)我国南宋时期数学家秦九韶曾提出利用三角形的三边长求面积的秦九韶公式:S=.其中三角形边长分别为a,b,c,三角形的面积为S.
若x为整数,当CABC取得最大值时,请用秦九韶公式求出△ABC的面积.
21.
若代数式是二次根式,则x的取值范围是___________.
22.
列分式方程解应用题
用电脑程序控制小型赛车进行200m比赛,“畅想号”和“逐梦号”两赛车进入了最后的决赛. 比赛中,两车从起点同时出发,“畅想号”到达终点时,“逐梦号”离终点还差20m.从赛后数据得知两车的平均速度相差1m/s.求“畅想号”的平均速度.
23.
解方程:
24.
如图,在△ABC中,∠ABC=50°,∠BAC=20°,D为线段AB的垂直平分线与直线BC的交点,连结AD,则∠CAD=(   )

A.40°B.30°C.20°D.10°
25.
如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE的延长线于点F.
(1)证明:△ADE≌△CFE;
(2)若∠B=∠ACB,CE=5,CF=7,求DB.
26.
如图1,E是等边三角形ABC的边AB所在直线上一点,D是边BC所在直线上一点,且D与C不重合,若EC=E
A.则称D为点C关于等边三角形ABC的反称点,点E称为反称中心.
在平面直角坐标系xOy中,
(1)已知等边三角形AOC的顶点C的坐标为(2,0),点A在第一象限内,反称中心E在直线AO上,反称点D在直线OC上.
①如图2,若E为边AO的中点,在图中作出点C关于等边三角形AOC的反称点D,并直接写出点D的坐标:    
②若AE=2,求点C关于等边三角形AOC的反称点D的坐标;
(2)若等边三角形ABC的顶点为B(n,0),C(n+1,0),反称中心E在直线AB上,反称点D在直线BC上,且2≤AE<3.请直接写出点C关于等边三角形ABC的反称点D的横坐标t的取值范围:    (用含n的代数式表示).
试卷分析
  • 【1】题量占比

    单选题:(9道)

    填空题:(7道)

    解答题:(10道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:5

    7星难题:0

    8星难题:12

    9星难题:9