1.单选题- (共5题)
4.
如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(
,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有错误的结论有( )个.



A.1 | B.2 | C.3 | D.4 |
2.填空题- (共3题)
7.
定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.如:min{1,﹣2}=﹣2,min{﹣1,2}=﹣1.(1)min{x2﹣1,﹣2}=_____;(2)若min{x2﹣2x+k,﹣3}=﹣3,则实数k的取值范围是_____.
3.解答题- (共5题)
10.
某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.
(1)请直接写出y与x之间的函数关系式;
(2)如果每天获得160元的利润,销售单价为多少元?
(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
销售单价x(元) | 3.5 | 5.5 |
销售量y(袋) | 280 | 120 |
(1)请直接写出y与x之间的函数关系式;
(2)如果每天获得160元的利润,销售单价为多少元?
(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
11.
如图,已知:二次函数y=x2+bx+c 的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与 y 轴交于点 C(0,-3)在抛物线上.
(1)求抛物线的表达式;
(2)抛物线的对称轴上有一动点 P,求出当 PB+PC 最小时点 P的坐标;
(3)若抛物线上有一动点Q,使△ABQ的面积为6,求Q点坐标.
(1)求抛物线的表达式;
(2)抛物线的对称轴上有一动点 P,求出当 PB+PC 最小时点 P的坐标;
(3)若抛物线上有一动点Q,使△ABQ的面积为6,求Q点坐标.

12.
反比例函数y=
(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).
(1)求反比例函数的解析式及B点的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.

(1)求反比例函数的解析式及B点的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.

试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:11
7星难题:0
8星难题:2
9星难题:0