1.单选题- (共7题)
3.
据海峡导报报道,为推进漳州绿色农业发展, 2018-2020年,漳州市将完成农业绿色发展项目总投资414亿元。已知漳州2018年已完成项目投资100亿元,假设后两年该项目投资的平均增长率为x,依题意可列方程为( )
A.![]() | B.![]() |
C.![]() | D.![]() |
6.
如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为A(3,0),其部分图象如图所示,下列结论中:①b2<4ac;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④a+b+c<0;⑤当0<x<3时,y随x增大而减小;其中结论正确的个数是( )


A.4个 | B.3个 | C.2个 | D.1个 |
2.填空题- (共3题)
3.解答题- (共7题)
14.
已知:二次函数
中的
和
满足下表:
(1) 观察上表可求得
的值为________;
(2) 试求出这个二次函数的解析式;
(3) 若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,请直接写出n的取值范围.




![]() | … | ![]() | 0 | 1 | 2 | 3 | … |
![]() | … | 3 | 0 | ![]() | 0 | m | … |
(1) 观察上表可求得

(2) 试求出这个二次函数的解析式;
(3) 若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,请直接写出n的取值范围.
15.
阳光市场某个体商户购进某种电子产品,每个进价是50元.调查发现,当售价是80元时,平均一周可卖出160个,而当售价每降低2元时,平均一周可多卖出20个.若设每个电子产品降价x元,
(1)根据题意,填表:
(2)若商户计划每周盈利5200元,且尽量减少库存,则应降价多少元?
(1)根据题意,填表:
| 进价(元) | 售价(元) | 每件利润(元) | 销量(个) | 一周总利润(元) |
降价前 | 50 | 80 | 30 | 160 | ![]() |
降价后 | 50 | | | | |
(2)若商户计划每周盈利5200元,且尽量减少库存,则应降价多少元?
16.
已知:抛物线y=mx2+(m﹣2)x﹣2m+2(m≠0).
(1)求证:抛物线与x轴有交点;
(2)若抛物线与x轴交于点A(x1,0),B(x2,0),点A在点B的右侧,且x1+2x2=1.
①求m的值;
②点P在抛物线上,点G(n,﹣
n﹣
),求PG的最小值.
(1)求证:抛物线与x轴有交点;
(2)若抛物线与x轴交于点A(x1,0),B(x2,0),点A在点B的右侧,且x1+2x2=1.
①求m的值;
②点P在抛物线上,点G(n,﹣


试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(3道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:1
7星难题:0
8星难题:5
9星难题:10