1.单选题- (共9题)
2.选择题- (共1题)
10.
为了推进网上办税、自主办税,近年来,重庆市不断加快纳税服务综合平台的建设,使许多纳税人不出家门,即可进行网上完税、手机报税。这一做法( )
①扩大了纳税范围,增加了纳税金额 ②给纳税人的纳税行为带来了极大的便利 ③发挥了现代科学技术在征税中的作用 ④避免了违反税法行为的发生
3.填空题- (共3题)
4.解答题- (共7题)
16.
随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式(如表格、图象所示):
设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB.
(1)如图,是yB与x之间函数关系的图象,请根据图象写出m,n的值.
(2)写出yA与x之间的函数关系式.
(3)若某同学每月上网学习时间为70小时,那么选择哪种方式上网学习合算,为什么?
收费方式 | 月使用费/元 | 包时上网时间/h | 超时费(元/min) |
A | 7 | 25 | 0.01 |
B | m | n | p |
设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB.
(1)如图,是yB与x之间函数关系的图象,请根据图象写出m,n的值.
(2)写出yA与x之间的函数关系式.
(3)若某同学每月上网学习时间为70小时,那么选择哪种方式上网学习合算,为什么?

17.
如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)若只沿y轴上下平移该抛物线后与y轴的交点为A1,顶点为M1,且四边形AMM1A1是菱形,写出平移后抛物线的表达式.
(1)求b、c的值;
(2)若只沿y轴上下平移该抛物线后与y轴的交点为A1,顶点为M1,且四边形AMM1A1是菱形,写出平移后抛物线的表达式.

19.
类比特殊四边形的学习,我们可以定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.

探索体验
(1)如图①,已知四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.
(2)如图②,若AB=AD=a,CB=CD=b,且a≠b,那么四边形ABCD是“等对角四边形”吗?试说明理由.
尝试应用
(3)如图③,在边长为6的正方形木板ABEF上裁出“等对角四边形”ABCD,若已经确定DA=4,∠DAB=60°,是否在正方形ABEF内(包括边上)存在一点点C,使四边形ABCD以∠DAB=∠BCD为等对角的四边形的面积最大?若存在,试求出四边形ABCD的最大面积;若不存在,请说明理由.

探索体验
(1)如图①,已知四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.
(2)如图②,若AB=AD=a,CB=CD=b,且a≠b,那么四边形ABCD是“等对角四边形”吗?试说明理由.
尝试应用
(3)如图③,在边长为6的正方形木板ABEF上裁出“等对角四边形”ABCD,若已经确定DA=4,∠DAB=60°,是否在正方形ABEF内(包括边上)存在一点点C,使四边形ABCD以∠DAB=∠BCD为等对角的四边形的面积最大?若存在,试求出四边形ABCD的最大面积;若不存在,请说明理由.
试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(1道)
填空题:(3道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:11
7星难题:0
8星难题:2
9星难题:4