1.单选题- (共9题)
6.
如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为( )


A.![]() | B.![]() | C.2![]() | D.3![]() |
7.
如图,OA=
,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为( )



A.![]() | B.![]() | C.![]() | D.![]() |
8.
某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:
这批灯泡的平均使用寿命是( )
使用寿命x/h | 60≤x<100 | 100≤x<140 | 140≤x<180 |
灯泡只数 | 30 | 30 | 40 |
这批灯泡的平均使用寿命是( )
A.112 h | B.124 h | C.136 h | D.148 h |
2.填空题- (共6题)
11.
在平面直角坐标系中,已知点P(x,0),A(a,0),设线段PA的长为y,写出y关于x的函数的解析式为___,若其函数的图象与直线y=2相交,交点的横坐标m满足﹣5≤m≤3,则a的取值范围是___.
12.
如图,购买“黄金1号”王米种子,所付款金额y元与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则购买1千克“黄金1号”玉米种子需付款___元,购买4千克“黄金1号”玉米种子需___元.

13.
如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t<1),则当t=___时,△PQF为等腰三角形.

3.解答题- (共8题)
16.
如图1,直线y=﹣
x+6与y轴于点A,与x轴交于点D,直线AB交x轴于点B,△AOB沿直线AB折叠,点O恰好落在直线AD上的点C处.

(1)求点B的坐标;
(2)如图2,直线AB上的两点F、G,△DFG是以FG为斜边的等腰直角三角形,求点G的坐标;
(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P、Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.


(1)求点B的坐标;
(2)如图2,直线AB上的两点F、G,△DFG是以FG为斜边的等腰直角三角形,求点G的坐标;
(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P、Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.
17.
考虑下面两种移动电话计费方式
(1)直接写出两种计费方式的费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式.
(2)求出两种计费方式费用相等的本地通话时间是多少分钟.
| 方式一 | 方式二 |
月租费(月/元) | 30 | 0 |
本地通话费(元/分钟) | 0.30 | 0.40 |
(1)直接写出两种计费方式的费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式.
(2)求出两种计费方式费用相等的本地通话时间是多少分钟.
19.
某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.
其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.
(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;
(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?
服装 | 进价(元/件) | 售价(元/件) |
A | 80 | 120 |
B | 60 | 90 |
其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.
(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;
(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?
20.
如图1,直线y=kx﹣2k(k<0),与y轴交于点A,与x轴交于点B,AB=2
.

(1)直接写出点A,点B的坐标;
(2)如图2,以AB为边,在第一象限内画出正方形ABCD,求直线DC的解析式;
(3)如图3,(2)中正方形ABCD的对角线AC、BD即交于点G,函数y=mx和y=
(x≠0)的图象均经过点G,请利用这两个函数的图象,当mx>
时,直接写出x的取值范围.


(1)直接写出点A,点B的坐标;
(2)如图2,以AB为边,在第一象限内画出正方形ABCD,求直线DC的解析式;
(3)如图3,(2)中正方形ABCD的对角线AC、BD即交于点G,函数y=mx和y=


22.
如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.

(1)写出BE与AF之间的关系,并证明你的结论;
(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长;
(3)如图3,在(2)的条件下,作FQ∥DG交AB于点Q,请直接写出FQ的长.

(1)写出BE与AF之间的关系,并证明你的结论;
(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长;
(3)如图3,在(2)的条件下,作FQ∥DG交AB于点Q,请直接写出FQ的长.
试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(6道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:6
7星难题:0
8星难题:8
9星难题:7