1.选择题- (共2题)
2.单选题- (共1题)
3.填空题- (共8题)
6.
如图,在平面直角坐标系中,一个点从A(a1,a2)出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,按此一直运动下去,则a2015+a2016的值为 .

4.解答题- (共7题)
14.
如图,在平面直角坐标系中,
、
均在边长为1的正方形网格格点上.

(1)在网格的格点中,找一点C,使△ABC是直角三角形,且三边长均为无理数(只画出一个,并涂上阴影);
(2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有 个;
(3)若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标 .



(1)在网格的格点中,找一点C,使△ABC是直角三角形,且三边长均为无理数(只画出一个,并涂上阴影);
(2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有 个;
(3)若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标 .
15.
如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.

(1)如图1,连接GH,GF,求证:GH=GF;
(2)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;
(3)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为 cm2.(直接写结果)

(1)如图1,连接GH,GF,求证:GH=GF;
(2)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;
(3)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为 cm2.(直接写结果)
16.
如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发,沿着AO方向匀速滚向点O,机器人同时从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?

17.
如图,直线l1的函数表达式为y1=﹣3x+3,且l1与x轴交于点D,直线l2:y2=kx+b经过点A,B,与直线l1交于点C.

(1)求直线l2的函数表达式及C点坐标;
(2)求△ADC的面积;
(3)当x满足何值时,y1>y2;(直接写出结果);
(4)在直角坐标系中有点E,和A,C,D构成平行四边形,请直接写出E点的坐标.

(1)求直线l2的函数表达式及C点坐标;
(2)求△ADC的面积;
(3)当x满足何值时,y1>y2;(直接写出结果);
(4)在直角坐标系中有点E,和A,C,D构成平行四边形,请直接写出E点的坐标.
18.
近年来,我国多个城市遭遇雾霾天气,空气中可吸入颗粒(又称PM2.5)浓度升高,为应对空气污染,小强家购买了空气净化器,该装置可随时显示室内PM2.5的浓度,并在PM2.5浓度超过正常值25(mg/m3)时吸收PM2.5以净化空气.随着空气变化的图象(如图),请根据图象,解答下列问题:

(1)写出点M的实际意义__________________________;
(2)求第1小时内,y与t的一次函数表达式;
(3)已知第5﹣6小时是小强妈妈做晚餐的时间,厨房内油烟导致PM2.5浓度升高.若该净化器吸收PM2.5的速度始终不变,则第6小时之后,预计经过多长时间室内PM2.5浓度可恢复正常?

(1)写出点M的实际意义__________________________;
(2)求第1小时内,y与t的一次函数表达式;
(3)已知第5﹣6小时是小强妈妈做晚餐的时间,厨房内油烟导致PM2.5浓度升高.若该净化器吸收PM2.5的速度始终不变,则第6小时之后,预计经过多长时间室内PM2.5浓度可恢复正常?
试卷分析
-
【1】题量占比
选择题:(2道)
单选题:(1道)
填空题:(8道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:7
7星难题:0
8星难题:1
9星难题:7