1.单选题- (共11题)
3.
如图,在平面直角坐标系中,点A(-2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是( )


A.(-2,0) | B.(0,0) | C.(2,0) | D.(4,0) |
9.
如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS.下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中,正确的有( )


A.1个 | B.2个 | C.3个 | D.4个 |
2.填空题- (共10题)
14.
如图,小倩家买了一套新房,其结构如图所示(单位:m).施工方已经根据合同约定把公共区域(客厅、餐厅、厨房、卫生间)铺上了地板砖,小倩打算把两个卧室铺上实木地板,则小倩需要准备的地板面积是________________.

3.解答题- (共7题)
25.
元旦节前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销量大,店主决定将玫瑰每枝降价2元促销,降价后80元可购买玫瑰的数量是原来可购买玫瑰数量的1.25倍.
(1)试问:降价后每枝玫瑰的售价是多少元?
(2)根据销售情况,店主用不多于1000元的资金再次购进两种鲜花共180枝,康乃馨进价为6元/枝,玫瑰的进价是5元/枝.试问;至少需要购进多少枝玫瑰?
(1)试问:降价后每枝玫瑰的售价是多少元?
(2)根据销售情况,店主用不多于1000元的资金再次购进两种鲜花共180枝,康乃馨进价为6元/枝,玫瑰的进价是5元/枝.试问;至少需要购进多少枝玫瑰?
27.
如图所示,已知在△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且BD和CE相交于O点.
(1)试说明△OBC是等腰三角形;
(2)连接OA,试判断直线OA与线段BC的关系,并说明理由.
(1)试说明△OBC是等腰三角形;
(2)连接OA,试判断直线OA与线段BC的关系,并说明理由.

28.
数学学习中常常需要用到从特殊到一般的数学思想来解决问题,即先观察一些特殊的事例,然后分析它们共同具有的特征,从而作出一般的结论.例如:数学课上,王老师出示了一道题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由.”
小慧与同桌小明讨论后,进行了如下解答:
(1)特殊情况,探索结论:当点E是AB的中点时(如图1),线段AE与DB的大小关系,请你直接写出结论:AE___________DB(填“>”,“=”或“<”).
(2)特例启发,解答题目:当点E是AB上的任意一点时(如图2),线段AE与DB的大小关系是AE___________DB(填“>”,“=”或“<”),请你判断后写出解答过程.
小慧与同桌小明讨论后,进行了如下解答:
(1)特殊情况,探索结论:当点E是AB的中点时(如图1),线段AE与DB的大小关系,请你直接写出结论:AE___________DB(填“>”,“=”或“<”).
(2)特例启发,解答题目:当点E是AB上的任意一点时(如图2),线段AE与DB的大小关系是AE___________DB(填“>”,“=”或“<”),请你判断后写出解答过程.

试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(10道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:21
7星难题:0
8星难题:2
9星难题:4