1.单选题- (共2题)
1.
如图是二次函数y=ax2+bx+c(a≠0)的图象与x轴的相交情况,关于下列结论:
①方程ax2+bx=0的两个根为x1=0,x2=﹣4;②b﹣4a=0;③9a+3b+c<0;其中正确的结论有( )

①方程ax2+bx=0的两个根为x1=0,x2=﹣4;②b﹣4a=0;③9a+3b+c<0;其中正确的结论有( )

A.0个 | B.1个 | C.2个 | D.3个 |
2.填空题- (共5题)
7.
如图,已知
的半径为5,P是直径AB的延长线上一点,
,CD是
的一条弦,
,以PC,PD为相邻两边作▱PCED,当C,D点在圆周上运动时,线段PE长的最大值与最小值的积等于______.





3.解答题- (共7题)
10.
某水果店销售某种水果,原来每箱售价60元,每星期可卖200箱.为了促销,该水果店决定降价销售.市场调查反映:每降价1元,每星期可多卖20箱.已知该水果每箱的进价是40元,设该水果每箱售价x元,每星期的销售量为y箱.
(1)求y与x之间的函数关系式;
(2)当每箱售价降多少元时,每星期的销售利润最大,最大利润多少元?
(1)求y与x之间的函数关系式;
(2)当每箱售价降多少元时,每星期的销售利润最大,最大利润多少元?
11.
已知二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点横坐标分别是1和2.
(1)当a=﹣1时,求这个二次函数的表达式;
(2)设A(n,y1)、B(n+1,y2)、C(n+2,y3)在y=ax2+bx+c的图象上,其中n为正整数.
①求出所有满足条件y2=3y1的n;
②设a>0,n≥5,求证:以y1、y2、y3为三条线段的长可以构成一个三角形.
(1)当a=﹣1时,求这个二次函数的表达式;
(2)设A(n,y1)、B(n+1,y2)、C(n+2,y3)在y=ax2+bx+c的图象上,其中n为正整数.
①求出所有满足条件y2=3y1的n;
②设a>0,n≥5,求证:以y1、y2、y3为三条线段的长可以构成一个三角形.
13.
如图,以△ABC的边AC为直径作⊙O交AB、BC于E、D,D恰为BC的中点,过C作⊙O的切线,与AB的延长线交于F,过B作BM⊥AF,交CF于M.
(1)求证:MB=MC;
(2)若MF=5,MB=3,求⊙O的半径及弦AE的长.
(1)求证:MB=MC;
(2)若MF=5,MB=3,求⊙O的半径及弦AE的长.

试卷分析
-
【1】题量占比
单选题:(2道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:10
7星难题:0
8星难题:0
9星难题:2