1.单选题- (共5题)
4.
若要得到函数y=(x+1)2+2的图象,只需将函数y=x2的图象( )
A.先向右平移1个单位长度,再向上平移2个单位长度 |
B.先向左平移1个单位长度,再向上平移2个单位长度 |
C.先向左平移1个单位长度,再向下平移2个单位长度 |
D.先向右平移1个单位长度,再向下平移2个单位长度 |
2.填空题- (共1题)
6.
如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,以点A为圆心,以任意长为半径作弧,分别交AB、AC于点M、N,再分别以M、N为圆心,以大于
MN的长为半径作弧,两弧交于点P,作射线AP交BC于点D,则CD的长是_____.


3.解答题- (共6题)
8.
甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价,已知该商品现价为每件32.4元.
⑴若该商品两次调价的降价率相同,求这个降价率;
⑵经调查,该商品每降价0.2元,即可多销售10件. 已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?
⑴若该商品两次调价的降价率相同,求这个降价率;
⑵经调查,该商品每降价0.2元,即可多销售10件. 已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?
9.
2015年12月16﹣18日,第二届互联网大会在浙江乌镇胜利举行,这说明我国互联网发展走到了世界的前列,尤其是电子商务.据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.
(1)当销售单价定为50元时,求每月的销售件数;
(2)设每月获得利润为w(元),求每月获得利润w(元)关于销售单价x(元)的函数解析式;
(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)
(1)当销售单价定为50元时,求每月的销售件数;
(2)设每月获得利润为w(元),求每月获得利润w(元)关于销售单价x(元)的函数解析式;
(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)

10.
如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,经过A,D两点的圆的圆心F恰好在y轴上,⊙F与边BC相切于点E,与x轴交于点M,与y轴相交于另一点G,连接AE.
(1)求证:AE平分∠BAC;
(2)若点A,D的坐标分别为(0,﹣1),(2,0),求⊙F的半径;
(3)求经过三点M,F,D的抛物线的解析式.
(1)求证:AE平分∠BAC;
(2)若点A,D的坐标分别为(0,﹣1),(2,0),求⊙F的半径;
(3)求经过三点M,F,D的抛物线的解析式.

11.
(12分)矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4.

(1)求AD的长;
(2)求阴影部分的面积和直线AM的解析式;
(3)求经过A、B、D三点的抛物线的解析式;
(4)在抛物线上是否存在点P,使
?若存在,求出P点坐标;若不存在,请说明理由.

(1)求AD的长;
(2)求阴影部分的面积和直线AM的解析式;
(3)求经过A、B、D三点的抛物线的解析式;
(4)在抛物线上是否存在点P,使

试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(1道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:6
7星难题:0
8星难题:1
9星难题:3