1.单选题- (共5题)
3.
如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0,②2a﹣b=0,③a+b+c<0;④c﹣a=3,其中正确的有( )个.


A.1 | B.2 | C.3 | D.4 |
2.填空题- (共2题)
3.解答题- (共5题)
9.
在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/
下降到12月份的11340元/
.
(1)求11、12两月份平均每月降价的百分率是多少?
(2)如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/
?请说明理由


(1)求11、12两月份平均每月降价的百分率是多少?
(2)如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/

10.
如图,抛物线
与
轴交于
两点(点
在点
的左侧),点
的坐标为
,与
轴交于点
,直线
与
轴交于点
.动点
在抛物线上运动,过点
作
轴,垂足为
,交直线
于点
.
(1)求抛物线的解析式;
(2)当点
在线段
上时,
的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;
(3)点
是抛物线对称轴与
轴的交点,点
是
轴上一动点,点
在运动过程中,若以
为顶点的四边形是平行四边形时,请直接写出点
的坐标.


















(1)求抛物线的解析式;
(2)当点



(3)点








11.
某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?
试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(2道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:5
7星难题:0
8星难题:4
9星难题:1