1.单选题- (共8题)
7.
工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB
是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别
与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是( )




A.SSS | B.SAS | C.ASA | D.AAS |
8.
工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知
是一个任意角,在边
上分别取
,移动角尺,使角尺两边相同的刻度分别与点
重合,则过角尺顶点
的射线
便是
角平分线.在证明
≌
时运用的判定定理是( )











A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共2题)
3.解答题- (共6题)
12.
为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:

(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?
(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?

(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?
(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?
14.
已知∠BAE与∠BCD互为补角,AB=AE,CB=CD,连接ED,点P为ED的中点.

(1)如图1,若点A,B,C三点在同一条直线上.
①求证:∠EBD=90°;②求证:AP∥BD;
(2)如图2,若点A,B,C三点不在同一条直线上,求证:AP⊥CP.

(1)如图1,若点A,B,C三点在同一条直线上.
①求证:∠EBD=90°;②求证:AP∥BD;
(2)如图2,若点A,B,C三点不在同一条直线上,求证:AP⊥CP.
15.
如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,

(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.
(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.
(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.

(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.
(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.
(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(2道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:7
7星难题:0
8星难题:3
9星难题:3