1.单选题- (共6题)
2.
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:
①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0;⑤3a+c<0.
其中所有正确结论的个数是( )

①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0;⑤3a+c<0.
其中所有正确结论的个数是( )

A.1 | B.2 | C.3 | D.4 |
4.
下列命题正确的是( )
①三角形中最大内角一定不小于600;
② 所有等腰直角三角形都相似;
③正多边形的外角为240,则它的中心角也为240;
④顺次连接对角线相等的四边形各边中点得到矩形.
①三角形中最大内角一定不小于600;
② 所有等腰直角三角形都相似;
③正多边形的外角为240,则它的中心角也为240;
④顺次连接对角线相等的四边形各边中点得到矩形.
A.①② | B.①②③ | C.②③④ | D.①②④ |
6.
如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么
的值为( )



A.13 | B.19 | C.25 | D.169 |
2.选择题- (共1题)
3.填空题- (共3题)
4.解答题- (共5题)
12.
我市某工艺厂为配合伦敦奥运,设计了一款成本为20元/件的工艺品投入市场进行试销,得到如下数据:
(1)把上表中x、y的各组对应值作为点的坐标,在右面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;

(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润为9000元?
(利润=销售总价-成本总价)
(3)根据要求,试销该工艺品每天获得的利润不低于8000元,每天销售量不低于350件,试确定销售单价x(元/件)的取值范围,并求出工艺厂试销该工艺品每天获得的最大利润.
销售单价x (元/件) | …… | 30 | 40 | 50 | 60 | …… |
每天销售量y(件) | …… | 500 | 400 | 300 | 200 | …… |
(1)把上表中x、y的各组对应值作为点的坐标,在右面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;

(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润为9000元?
(利润=销售总价-成本总价)
(3)根据要求,试销该工艺品每天获得的利润不低于8000元,每天销售量不低于350件,试确定销售单价x(元/件)的取值范围,并求出工艺厂试销该工艺品每天获得的最大利润.
13.
如图,将正方形ABCO绕点A顺时针旋转一定角度,得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.
(1)求证:△AOG≌△ADG;
(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;
(3)若正方形ABCO的边长为
,∠1=∠2,求AP的长.
(1)求证:△AOG≌△ADG;
(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;
(3)若正方形ABCO的边长为


14.
如图,在平面直角坐标系中,四边形OABC是矩形,OA=3,AB=4,将线段OA绕点O顺时针旋转90°,使点A落在OC边上的点E处,抛物线y=ax2+bx+c过A、E、B三点.
(1)求抛物线的解析式;
(2)若M为抛物线的对称轴上一动点,当△MBE的周长最小时,求M点的坐标;
(3)点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时点Q从点B出发,以每秒1个单位长度的速度沿BO向点O运动.P点到达终点B时,Q点同时停止运动,运动时间为t(秒).若△PBQ是等腰三角形,求
的值.

(1)求抛物线的解析式;
(2)若M为抛物线的对称轴上一动点,当△MBE的周长最小时,求M点的坐标;
(3)点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时点Q从点B出发,以每秒1个单位长度的速度沿BO向点O运动.P点到达终点B时,Q点同时停止运动,运动时间为t(秒).若△PBQ是等腰三角形,求



试卷分析
-
【1】题量占比
单选题:(6道)
选择题:(1道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:5
7星难题:0
8星难题:0
9星难题:7