1.单选题- (共11题)
4.
我区某中学七年级一班40名同学为灾区捐款,共捐款2000元,捐款情况如表:
表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组( )
捐款(元) | 20 | 40 | 50 | 100 |
人数 | 10 | | | 8 |
表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组( )
A.![]() | B.![]() |
C.![]() | D.![]() |
11.
(2017•黔南州)下列调查中,适宜采用全面调查(普查)方式的是()
A.了解我国民众对乐天集团“萨德事件”的看法 |
B.了解湖南卫视《人们的名义》反腐剧的收视率 |
C.调查我校某班学生喜欢上数学课的情况 |
D.调查某类烟花爆竹燃放的安全情况 |
2.填空题- (共6题)
3.解答题- (共7题)
18.
一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.
(1)请判断:2561 (填“是”或“不是”)“和平数”
(2)直接写出:最小的“和平数”是 ,最大的“和平数”是
(3)如果一个“和平数”的十位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是14的倍数,求满足条件的所有“和平数”.
(1)请判断:2561 (填“是”或“不是”)“和平数”
(2)直接写出:最小的“和平数”是 ,最大的“和平数”是
(3)如果一个“和平数”的十位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是14的倍数,求满足条件的所有“和平数”.
20.
今年6月初,由于持续暴雨,某市遭受严重水涝灾害,群众失去家园,市民政局为解决灾民困难,紧急组织了一批救灾帐篷和食品准备送往灾区.已知这批物资中,帐篷和食品共320件,且帐篷比食品多80件.
(1)求帐篷和食品各有多少件?
(2)现计划租用A、B两种货车共8辆,一次性将这批物资全部送到灾民手中,已知两种货车可装帐篷和食品的件数以及每辆货车所需付运费情况如下表,求出运费最少的方案?最少运费是多少?
(1)求帐篷和食品各有多少件?
(2)现计划租用A、B两种货车共8辆,一次性将这批物资全部送到灾民手中,已知两种货车可装帐篷和食品的件数以及每辆货车所需付运费情况如下表,求出运费最少的方案?最少运费是多少?

22.
请把下列证明过程补充完整.已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上,∠1=∠2=∠E,∠3=∠4.求证:AB∥CD.

证明:∵∠2=∠E(已知)
∴ ∥BC( )
∴∠3=∠ ( )
∵∠3=∠4(已知)
∴∠4=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF ,即∠BAF=∠
∴∠4=∠ (等量代换)
∴ ( )

证明:∵∠2=∠E(已知)
∴ ∥BC( )
∴∠3=∠ ( )
∵∠3=∠4(已知)
∴∠4=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF ,即∠BAF=∠
∴∠4=∠ (等量代换)
∴ ( )
23.
如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0).且a,b满足|a+3|+(a-2b+7)2=0.
现同时将点A,B分别向左平移2个单位,再向上平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)请直接写出A,B两点的坐标.
(2)如图2,点P是线段AC上的一个动点,点Q是线段CD的中点,连接PQ,PO,当点P在线段AC上移动时(不与A,C重合),请找出∠PQD,∠OPQ,∠POB的数量关系,并证明你的结论.
(3)在坐标轴上是否存在点M,使三角形MAD的面积与三角形ACD的面积相等?若存在,直接写出点M的坐标;若不存在,试说明理由.

现同时将点A,B分别向左平移2个单位,再向上平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)请直接写出A,B两点的坐标.
(2)如图2,点P是线段AC上的一个动点,点Q是线段CD的中点,连接PQ,PO,当点P在线段AC上移动时(不与A,C重合),请找出∠PQD,∠OPQ,∠POB的数量关系,并证明你的结论.
(3)在坐标轴上是否存在点M,使三角形MAD的面积与三角形ACD的面积相等?若存在,直接写出点M的坐标;若不存在,试说明理由.


试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(6道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:10
7星难题:0
8星难题:10
9星难题:4