1.单选题- (共3题)
2.选择题- (共2题)
3.填空题- (共3题)
8.
如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=
的图象上,则k的值为_____.


4.解答题- (共5题)
9.
某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?
(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?
10.
如图,直线y=2x+6与反比例函数y=
(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)观察图象,直接写出当x>0时不等式2x+6﹣
<0的解集;
(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?

(1)求m的值和反比例函数的表达式;
(2)观察图象,直接写出当x>0时不等式2x+6﹣

(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?

12.
如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)判断AE与⊙O的位置关系,并说明理由;
(2)若BC=6,AC=4CE时,求⊙O的半径.
(1)判断AE与⊙O的位置关系,并说明理由;
(2)若BC=6,AC=4CE时,求⊙O的半径.

试卷分析
-
【1】题量占比
单选题:(3道)
选择题:(2道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:8
7星难题:0
8星难题:2
9星难题:1