1.单选题- (共7题)
2.
在2018政府工作报告中,总理多次提及大数据、人工智能等关键词,经过数年的爆发式发展,我国人工智能在2017年迎来发展的“应用元年”,预计2020年中国人工智能核心产业规模超1500亿元,将150000000000用科学计数法表示应为
A.1.5×102 | B.1.5×1010 | C.1.5×1011 | D.1.5×1012 |
4.
下列变形中:
①由方程
=2去分母,得x﹣12=10;
②由方程
x=
两边同除以
,得x=1;
③由方程6x﹣4=x+4移项,得7x=0;
④由方程2﹣
两边同乘以6,得12﹣x﹣5=3(x+3).
错误变形的个数是( )个.
①由方程

②由方程



③由方程6x﹣4=x+4移项,得7x=0;
④由方程2﹣

错误变形的个数是( )个.
A.4 | B.3 | C.2 | D.1 |
2.填空题- (共6题)
3.解答题- (共10题)
15.
(1)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元):
表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?
(2)某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利 2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | 合计 |
–27.8 | –70.3 | 200 | 138.1 | –8 | ■■ | 188 | 458 |
表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?
(2)某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利 2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?
16.
如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,其中,四个角部分是半径为(a﹣b)米的四个大小相同的扇形,中间部分是边长为(a+b)米的正方形.
(1)用含a、b的式子表示需要硬化部分的面积;
(2)若a=30,b=10,求出硬化部分的面积(结果保留π的形式).
(1)用含a、b的式子表示需要硬化部分的面积;
(2)若a=30,b=10,求出硬化部分的面积(结果保留π的形式).

18.
一般情况下
不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得
成立的一对数a,b为“相伴数对”,记为(a,b).
(1)若(1,b)是“相伴数对”,求b的值;
(2)若(m,n)是“相伴数对”,其中m≠0,求
;
(3)若(m,n)是“相伴数对”,求代数式m﹣
﹣[4m﹣2(3n﹣1)]的值.


(1)若(1,b)是“相伴数对”,求b的值;
(2)若(m,n)是“相伴数对”,其中m≠0,求

(3)若(m,n)是“相伴数对”,求代数式m﹣

20.
在直角三角形ABC中,若AB=16cm,AC=12cm,BC=20cm. 点P从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,如果点P、Q同时出发,用t(秒)表示移动时间,那么:
(1)如图1,请用含t的代数式表示,
①当点Q在AC上时,CQ= ;②当点Q在AB上时,AQ= ;
③当点P在AB上时,BP= ; ④当点P在BC上时,BP= .
(2)如图2,若点P在线段AB上运动,点Q在线段CA上运动,当QA=AP时,试求出t的值.
(3)如图3,当P点到达C点时,P、Q两点都停止运动,当AQ=BP时,试求出t的值.
(1)如图1,请用含t的代数式表示,
①当点Q在AC上时,CQ= ;②当点Q在AB上时,AQ= ;
③当点P在AB上时,BP= ; ④当点P在BC上时,BP= .
(2)如图2,若点P在线段AB上运动,点Q在线段CA上运动,当QA=AP时,试求出t的值.
(3)如图3,当P点到达C点时,P、Q两点都停止运动,当AQ=BP时,试求出t的值.

21.
如图,以直线 AB 上一点 O 为端点作射线 OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点 O 处.(注:∠DOE=90°)
(1)如图①,若直角三角板 DOE 的一边 OD 放在射线 OB 上,则∠COE= °;
(2)如图②,将直角三角板 DOE 绕点 O 逆时针方向转动到某个位置,若 OC 恰好平分∠BOE,求∠COD的度数;
(3)如图③,将直角三角板 DOE 绕点 O 转动,如果 OD 始终在∠BOC的内部, 试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.
(1)如图①,若直角三角板 DOE 的一边 OD 放在射线 OB 上,则∠COE= °;
(2)如图②,将直角三角板 DOE 绕点 O 逆时针方向转动到某个位置,若 OC 恰好平分∠BOE,求∠COD的度数;
(3)如图③,将直角三角板 DOE 绕点 O 转动,如果 OD 始终在∠BOC的内部, 试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.

试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(6道)
解答题:(10道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:13
7星难题:0
8星难题:6
9星难题:2