1.选择题- (共2题)
1.定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b﹣a,用[x]表示不超过x的最大整数,例如[3.2]=3,[﹣2.3]=﹣3.记{x}=x﹣[x],设f(x)=[x]•{x},g(x)=x﹣1,若用d表示不等式f(x)<g(x)解集区间长度,则当0≤x≤3时有( )
2.设函数f(x)=log2(4x)•log2(2x)的定义域为 {#mathml#}{#/mathml#} .
(Ⅰ)若t=log2x,求t的取值范围;
(Ⅱ)求y=f(x)的最大值与最小值,并求取得最值时对应的x的值.
2.填空题- (共3题)
试卷分析
-
【1】题量占比
选择题:(2道)
填空题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:3
9星难题:0