1.单选题- (共6题)
1.
如图,直线l1解析式为y=x+2,且与坐标轴分别交于A、B两点,与双曲线交于点P(﹣1,1).点M是双曲线在第四象限上的一点,过点M的直线l2与双曲线只有一个公共点,并与坐标轴分别交于点C、点D,当四边形ABCD的面积取最小值时,则点M的坐标为( )


A.(1,﹣1) | B.(2,﹣![]() | C.(3,﹣![]() | D.不能确定 |
2.
如图,一次函数y=ax+b与x轴、y轴交于A、B两点,与反比例函数y=
相交于C、D两点,分别过C、D两点作y轴、x轴的垂线,垂足为E、F,连接CF、DE、E

A.有下列三个结论:①△CEF与△DEF的面积相等;②△DCE≌△CDF;③AC=BD.其中正确的结论个数是( )![]() | ||
B.0 | C.1 | D.2 D. 3 |
4.
已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图,则电流I关于电阻R的函数解析式为( )

A. I=
B. I=
C. I=
D. I=-

A. I=




5.
已知广州市的土地总面积约为7434km2, 人均占有的土地面积S(单位:km2/人)随全市人口n(单位:人)的变化而变化,则S与n的函数关系式为( )
A.S=7434n | B.S=![]() | C.n=7434S | D.S=![]() |
6.
已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图,如果以此蓄电池为电源的用电器限制电流不超过10A,那么此用电器的可变电阻为( )

A. 不小于3.2Ω B. 不大于3.2Ω C. 不小于12Ω D. 不大于12Ω

A. 不小于3.2Ω B. 不大于3.2Ω C. 不小于12Ω D. 不大于12Ω
2.填空题- (共8题)
7.
水池中有水若干吨,若单开一个出水口,水流速度v与全池水放光所用时t如下表:
写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系为________ ;这是一个________ 函数.
用时t小时 | 10 | 5 | ![]() | ![]() | 2 | ![]() | 1 |
| ﹣﹣﹣﹣﹣﹣﹣﹣→逐渐减小 | ||||||
出水速度(吨/小时) | 1 | 2 | 3 | 4 | 5 | 8 | 10 |
| ﹣﹣﹣﹣﹣﹣→逐渐增大 |
写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系为________ ;这是一个________ 函数.
8.
某商场出售一批进价为2元的贺卡,在市场营销中发现此贺卡的日销售单价x(元)与日销售量y(个)之间有如下关系:
则y与x之间的函数关系式为 ________ .
日销售单价x(元) | … | 3 | 4 | 5 | 6 | … |
日销售量y(个) | … | 20 | 15 | 12 | 10 | … |
则y与x之间的函数关系式为 ________ .
9.
根据题意,在横线上写出相应的函数关系式,并判断y是否为x的反比例函数(“是”就在后面的空格内打“1”,“不是”就在后面的空格内打“0”):
(1)长方形的面积S(cm2)一定,它的长y(cm)与宽x(cm)之间的关系式为 ________ .
(2)正方形的对角线长y(cm)与它的边长x(cm)之间的关系式为 ________ .
(3)一种商品的单价为a(元/件),所花费的钱数y(元)与购买的件数x(件)的关系式为 ________ .
(4)小明的家与学校相距2400m,他骑自行车上学的速度v(m/s)与所需时间t(s)的关系式为 ________ .
(1)长方形的面积S(cm2)一定,它的长y(cm)与宽x(cm)之间的关系式为 ________ .
(2)正方形的对角线长y(cm)与它的边长x(cm)之间的关系式为 ________ .
(3)一种商品的单价为a(元/件),所花费的钱数y(元)与购买的件数x(件)的关系式为 ________ .
(4)小明的家与学校相距2400m,他骑自行车上学的速度v(m/s)与所需时间t(s)的关系式为 ________ .
13.
小王驾车从甲地到乙地,他以70千米/时的平均速度4小时到达目的地,当他按原路匀速返回甲地时,汽车的速度y(千米/时)与时间x(时)(x≠0)的函数关系式为________________.
3.解答题- (共5题)
15.
如图所示,制作一种产品的同时,需要将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟,据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热.停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.
(1)分别求出该材料加热过程中和停止加热后y与x之间的函数表达式,并写出x的取值范围;
(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间是多少?

(1)分别求出该材料加热过程中和停止加热后y与x之间的函数表达式,并写出x的取值范围;
(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间是多少?

16.
如图,在平面直角坐标系中,正比例函数
与反比例函数
的图象分别交于A、C两点,已知点B与点D关于坐标原点O成中心对称,且点B的坐标为
其中
.
四边形ABCD的是______
填写四边形ABCD的形状
当点A的坐标为
时,四边形ABCD是矩形,求m,n的值.
试探究:随着k与m的变化,四边形ABCD能不能成为菱形?若能,请直接写出k的值;若不能,请说明理由.











17.
去学校食堂就餐,经常会在一个买菜窗口前等待,经调查发现,同学的舒适度指数y与等时间x(分)之间满足反比例函数关系,如下表:
已知学生等待时间不超过30分钟
(1)求y与x的函数关系式,并写出自变量x的取值范围.
(2)若等待时间8分钟时,求舒适度的值;
(3)舒适度指数不低于10时,同学才会感到舒适.请说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?
等待时间x | 1 | 2 | 5 | 10 | 20 |
舒适度指数y | 100 | 50 | 20 | 10 | 5 |
已知学生等待时间不超过30分钟
(1)求y与x的函数关系式,并写出自变量x的取值范围.
(2)若等待时间8分钟时,求舒适度的值;
(3)舒适度指数不低于10时,同学才会感到舒适.请说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?
18.
如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表:

(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;
(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;
(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?

(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;
(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;
(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?

19.
近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:

(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?

(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(8道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:7
7星难题:0
8星难题:6
9星难题:3