刷题首页
题库
高中数学
题干
美索不达米亚平原是人类文明的发祥地之一.美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的.如图所示程序框图,若输入
的值分别为8,2,0.5,(每次运算都精确到小数点后两位)则输出结果为( )
A.2.84
B.2.81
C.2.83
D.2.82
上一题
下一题
0.99难度 单选题 更新时间:2018-03-09 02:37:51
答案(点此获取答案解析)
同类题1
已知
函数是一个求余函数,其格式为
,其结果为
除以
的余数,例如
,如图所示是一个算法的程序框图,若输出的结果为4,则输入
的值为( )
A.10
B.12
C.14
D.16
同类题2
20世纪30年代,德国数学家洛萨---科拉茨提出猜想:任给一个正整数
,如果
是偶数,就将它减半;如果
是奇数,则将它乘3加1,不断重复这样的运算,经过有限步后,一定可以得到1,这就是著名的“
”猜想.如图是验证“
”猜想的一个程序框图,若输出
的值为8,则输入正整数
的所有可能值的个数为( )
A.3
B.4
C.6
D.无法确定
同类题3
元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的
,则一开始输入的
x
的值为( )
A.
B.
C.
D.
同类题4
执行如图所示程序框图所表达的算法,若输出的
值为
,则输入的
值为( )
A.
B.
C.
D.
同类题5
神奇的冰雹猜想(也有书称其为角谷猜想),是个貌似简单的数学难题,其猜想为:对任意的正整数
,如果这个数是奇数,就乘以3再加1,如果这个数是偶数,就除以2;如此反复运算,通过有限次,最终结果必为1(结果为1时,便停止运算).现有正整数
,经过5次运算得到1,则这个正整数
所有可能值的个数为( )
A.1
B.2
C.3
D.4
相关知识点
算法与框图
算法初步
算法与程序框图